

Geomechanical Hazard Based Design for Deep Rail Tunnels in The Himalayas - Case Study

NEW RAIL LINK BETWEEN RISHIKESH AND KARANPRAYAG – PACKAGE 1 & 8

MMRDA Conference Hall, Mumbai, 24.06.2022

Content

- Project Layout, Schematics and Challenges
- Functional Cross Sections
- Design Phase Development
- Design Criteria
- Design Verification

YÜKSEL PROJE

AECOM

AECOM

ITALFERR

Lombardi

125 km long New Broad Gauge Rail Link Between Rishikesh and Karanprayag in the State of Uttarakhand, India

5

6

7

8

9

Lon

• 105.47 km Main Tunnels

•

- 98.54 km Escape Tunnels
- 35 bridges, 16 major bridges
- Divided into 9 Packages

nb	ard	i	

Tunnel/Br

Tunnel/Br

Tunnel/Br

Tunnel/Br

63+460

73+489

83+899

Tunnel/Br |117+365 |125+172|

101+310 116+911

73+018

83+899

101+310

9.10

11

12.13

14.15

16 &16A

Srinagar, Maletha

Dhaari

Tilani

Golthir. Gaucher

Sivai

Tunnel Schematics – General arrangement

Challenges – Geological and Geomechanical

- Generally difficult and **complex excavation conditions**
- **Major tectonic features** in the tunnel : Main Boundary Thrust, Garhwal Syncline possibility of presence of faults and sheared zones are high
- Existence of most common and probably problematic rock type shales through out the tunnel
- Tunnel passes through at least 4 lateral valleys (and streams) posing water ingress problems; karstic phenomena in limestone deposits
- Most challenging in its initial part (ch 6+800 to 8+569) composed nearly cohesionless soil under low overburden
- Overburden reaches values of 715 m
- The design in general suffers however of a general **lack in investigation data** *Tunnel 1 is more challenging with respect to those posed by the nature than the logistics.*

Cross section – MT without invert

- Excavation and primary support according to the extrados geometry and the corresponding support class
- Final lining to be cast in place with steel reinforced concrete or SFRC
- At the intrados of the primary support one layer of geotextile to be installed so as to protect the waterproofing membrane from puncturing
- Double layer waterproofing membrane shall be installed.
- Ballast Less slab with height of 650mm and width of 2800mm (out of scope of works of the DDC, confirmation is required by the Client)

Cross section – MT

Main Tunnel with Invert

Excavation area of about 72.0m²

Clear area of 46.0 m²

Excavation area of about 77.8m²

Clear area of 46.0 m²

Cross section – ET

Escape Tunnel without Invert

Escape Tunnel with Invert

North

Water proofing membrane

Motorable escape/rescue way WxH = 3.50 m x 3.50 m

with geotextile

Excavation area of about 27.2 m²

Clear area of 18.4 m²

Leaky feeder cable Construction tolerance 10 cm Hydrant Pipe Speaker Lining Support measures R=10100 Cable tray for 11kV AMBULANCE SOS telephone box ± 0.00 Rd.L. 0000 000 -0.500 Inspection chamber every 93.75m Lateral drainage pipe Central drainage pipe Ø 200 mm Ø 300 mm

Excavation area of about 33.9 m² Clear area of 18.4 m²

Cross section – CP

Cross Passage without Invert

Cross Passage with Invert

North

R=10100

Leaky feeder cable

Construction

Speaker

tolerance 10 cm

Cable tray for 11kV

telephone box

SOS

-0.500

Water proofing membrane

Motorable escape/rescue way WxH = 3.50 m x 3.50 m

Hydrant Pipe

Lining

Support

Inspection chamber

Lateral drainage pipe

every 93.75m

Ø 200 mm

with geotextile

Excavation area of about 27.2 m²

Clear area of 18.4 m²

Excavation area of about 33.9 m² Clear area of 18.4 m²

AMBULANCE

± 0.00 Rd.L.

000

Central drainage pipe

Ø 300 mm

0000

Cross section – MT/CP/ET/Layby

Layby section at the junction CP-ET

Double door concept for self rescue

LT panels in the ET

Attention to the rooting of the cables from the ET to the MT – requirement of enlarged E&M shafts

Hydrant connection point

Civil Works Design

Underground Structure Design Geotechnical and geomechanical Design Design Criteria GBR Tunnel Design Rock Support Design Final lining Design

Drainage Design Technical Rooms, Niches, Firefighting system Portals and portal structures

Overground Structures Design

Access Roads Alignment and related structures Minor Bridges Culverts + Other Drainage Works Master Layout of Shivpuri Station Access Roads Lighting Utilities + Rail/Road Earthworks Earthworks for Station Yards and Emergency Areas Construction Sites

Environmental Study and Mitigation Measures

E&M Design

Design Criteria Electric Traction / OHE One (1) Electric Substation (ESS) Power Distribution, Earthing and Bonding Power Supply for MEP equipment MEP equipment for Tunnels MEP equipment for Stations and Technological Buildings Telecommunication Systems (related to Safety - concept) Tunnel ventilation design

Quality (QA/QC)

Observational Method

Design Methodology

Observational Method – Origin (industrial)

- Field measurement Surface mapping & monitoring
- Back analysis from monitoring
- Assessment of stability and design/ construction methods
- Construction Phase support selection

PDCA quality cycle, 1951, Deming (development plan for the Japanese industry)

Geomechanical characterization of rock mass

Geomechanical characterization of rock mass

- Geostructural characterization of rock masses
- Intact rock parameters
- Geostructural analysis of discontinuities
- Shear strength of rock discontinuities
- Geomechanical Characterization
 - GSI (Geological Strength Index) utilized for rockmass parameter calculation and to identify stress related hazards
 - RMR is utilized to complete the analysis of expected excavation behavior, mainly for its correlation with self-supporting capacity of rockmass
- Equivalent Mohr Coulomb parameters of rock mass

Rock mass parametrization

Geotechnical Parameters of Rock Mass

Geotechnical Parameters of Rock Mass

				1	2	3	4
× " ·= "	Α	Unconfined Compressive Strength [MPa]	MPa	Very high, > 100	Medium, 50 - 100	Low, 10 - 50	Very low, < 10
Roi	В	Deformation Modulus (Ei) [GPa]	Gpa	Very high, > 75	High, 50 - 75	Medium, 25 - 50	Low, < 25
tact rope efer	С	Structure Anisotropy	-	Massive (isotropic)	Low Anisotropy	Medium Anisotropy	Strong Anisotropy
루 또 은 또 참 그	D	Specific Weight [kN/m ³]	kN/m ³				
	Е	Deformation Modulus (Em) [GPa]	Gpa	High, > 25	Medium, 10 - 25	Low, 2 - 10	Very low, < 2
Rock Mass	F	Friction Angle (φ) [°]	-	High, > 40	Medium, 30 - 40	Low, 20 - 30	Very low, < 20
Properties	G	Cohesion [MPa]	MPa	High, > 2	Medium, 0.2 - 2	Low, 0.02 - 0.2	Very low, < 0.02
8 Bedding / 電 Schistosity	Н	Orientation (axis relative) [°]	-	Very favourable	Favourable	Unfavourable	Very Unfavourable
Characteristic		Friction Angle (φ) [°]	-	High, > 40	Medium, 30 - 40	Low, 20 - 30	Very low, < 20
S Strength	J	Cohesion [kPa]	MPa	High, > 2	Medium, 0.2 - 2	Low, 0.02 - 0.2	Very low, < 0.02
	Κ	Circular Type	-	none	Pores	Fractures	Karst
	L	Water Pressure[bar]	Bar	Low, < 1	Medium, 1 - 5	High, 5 - 10	Very high, > 10
Hydrogeology	М	Permeability (Lugeon) [L/m/min]	L/m/min	Very Low, < 1	Low, 1 - 5	Medium, 5 - 20	High, > 20
	Ν	Condition	-	Dry	Dripping a few small spring	Frequent smaller some large springs	Frequent larger springs large water flow

Geotechnical Parameters of Rock Mass

Indicative distribution of RMR classes in the tunnel stretch

	RMR I	RMR II	RMR III	RMR IV	RMR V	Soil	Total
%	1.6 %	2.4 %	42.4 %	40.9 %	8.8 %	3.9 %	100.0%
m	177 m	265 m	4,598 m	4434 m	954 m	421 m	10,850 m

Suggested preliminary characteristic parameters for soil

Project area	Typical soil	γ [kN/m³]	фр [°]	c [kPa]	υ [-]
Before Portal 1	GP-GM	19-21	35-40	0	0.3
Portal 1	SP-SM	18-20	34-37	0	0.3
Tunnel 1 in soil	SM	19	32-34	0	0.3
Portal 2	SP-SM	18-20	34-37	0	0.3

Hazard Definition

SITUATIONS - SCENARIOS

Block failure

Excavation face instability

"Plastic" deformations

High/low overburden

Ravelling material

Spalling - Rockburst

High water Aggressive water

inflow Time dependant

Swelling

behaviour

Modification of the rock characteristics

Strain softening/hardening

More ...

Particular pore pressure conditions

Risk Scenarios

In-situ Stress

- Major horizontal stress 032 and 055°, i.
 e. NE-SW directed, which is the push of the MBT.
- Anisotropic stress state
- K reaches values of up to 2.7; $K_{design} = 2.0$

3340000

Seismic Loads

The project lies in seismic zone IV (Figure 5.1) with accelerations of PGA= 0.24 g for the Maximum Credible Earthquake (MCE, 2% exceedance probability in 50 years) and PGA= 0.18 g for the Design Base Earthquake (DBE, 10% exceedance probability in 50 years).

Groundwater conditions

Problem where the tunnel passes under lateral valley - mostly correspond to fault zones. Several lithologies have limestone- karst phenomena and related water inflow.

	Lugeon							
Lithology	# of observations	Max	Min	Average	Conductivity classification	Rock mass discontinuity condition		
Boulder	1	14.2	14.2	14.2	moderate	few partly open		
Calcareous shale/marl	3	34.86	30.24	32.96	medium	some open		
Dolomitic limestone	4	6.27	2.8	4.84	low	tight		
Quartz arenite	2	33.48	28.96	31.22	medium	some open		
Sand/silt	6	46.67	13.3	19.8	medium	some open		
Shale	18	61.73	2.7	16.54	medium	some open		
Siltstone	5	3.3	1.42	2.32	low	tight		
Weak shale	0		-	-		-		

Squeezing

- Overall squeezing potential are not very significant.
- Minor squeezing problems may be observed in Blaini and Kauriyala
- In fault zones squeezing/ caving in

 $\sigma_{cm}/p_o = rock mass strength / in situ stress$

	Strain £ %	Geotechnical issues	Support types
A	Less than 1	Few stability problems and very simple tunnel support design methods can be used. Tunnel support recommendations based upon rock mass classifications provide an adequate basis for design.	Very simple tunnelling conditions, with rockbolts and shotcrete typically used for support.
В	1 to 2.5	Convergence confinement methods are used to predict the formation of a 'plastic' zone in the rock mass surrounding a tunnel and of the interaction between the progressive development of this zone and different types of support.	Minor squeezing problems which are generally dealt with by rockbolts and shotcrete; sometimes with light steel sets or lattice girders are added for additional security.
С	2.5 to 5	Two-dimensional finite element analysis, incorporating support elements and excavation sequence, are normally used for this type of problem. Face stability is generally not a major problem.	Severe squeezing problems requiring rapid installation of support and careful control of construction quality. Heavy steel sets embedded in shotcrete are generally required.
D	5 to 10	The design of the tunnel is dominated by face stability issues and, while two- dimensional finite analyses are generally carried out, some estimates of the effects of forepoling and face reinforcement are required.	Very severe squeezing and face stability problems. Forepoling and face reinforcement with steel sets embedded in shotcrete are usually necessary.
E	More than 10	Severe face instability as well as squeezing of the tunnel make this an extremely difficult three-dimensional problem for which no effective design methods are currently available. Most solutions are based on experience.	Extreme squeezing problems. Forepoling and face reinforcement are usually applied and yielding support may be required in extreme cases.

🕒 Lombardi

Spalling/ Rockburst

- Checked for generally higher overburdens brittle failures
- The stress within the surrounding rock mass increases and failure occurs when the stress exceeds the strength of the rock mass

Excavation Behavior Analysis

To express the expected behavior in terms of deformations and/or extent of the plasticized zone

Empirical Methods

Using both rockmass spatial patterns of discontinuities orientation and geomechanical properties

Geostructural analyses - Limit Equilibrium Methods Discontinuity controlled block instability

DATASHEET FOR ROCK QUALITY PARAMETERS

Name of Project: Construction of tunnels, bridges, and formation works from Chainage 06+015 to 18+444 (12.429km) under Paskage-1 in connection with new single line broad gauge rail link between Rishikesh and Kamapayag (125km) in the state of Uttrarkhand, India

Location		at CH. 17+00	at CH. 17+00 near approch road for P2					
Outcrop No./GPS Point No.		118	N: 248333	E:3336807	Elevation:393	Bmt		
Joint	Set No.	J1	J2	J3	J4			
Dip A	Amount/Dip Direction	45/195	56/035	56/010		Rating		
UCS	(MPa)		5-	-25	•	2		
RQD	(%)		<	25		3		
Spac	ing of Discontinuity (mm)	<6	60-200	<6		8		
uity	Persistence of Discontinuity (m)	3-10	<1	<1		2		
scontii	Aperture/Opening of Discontinuity (mm)	<0.1	0.1-1.0	0.1-1.0		5		
of Dis	Roughness Of Discontinuity	Smooth	Slight rough	Slight rough		1		
lition	Infilling of Discontinuity	Soft<5mm	Soft<5mm	Soft<5mm		2		
Conc	Weathering/Alteration of Discontinuity	Slight weathered	Slight weathered	Slight weathered		3		
Wate	er Condition		15					
Orier	ntation Of Discontinuity		-5					
		Rock Mas	ss Rating			36		
		Geological St	trength Index			36		
		Rock Class as	per Bieniawski			IV (Poor Rock)		
Rock	Mass description	Fine grain, bla Quartz arenite	ick coloured, thi	inly bedded Sha	ale with alterna	ates bands of		
Spec	cial Structure/Feature	Folded starta						

- Identifying the lithological grouping
- Wedge instability by block theory

Grey Shales_2 Geostructural analyses using DIPS

Symb	ol Se	t		Quantity
\$	1			11
×	2			8
Δ	3			3
+	4			6
▼	[no	data]		12
C	olor	Dens	ity Concentratio	ns
	I Col	Contour Data Maximum Density	0.00 - 1.50 .50 - 3.00 0.00 - 4.50 .50 - 6.00 .00 - 7.50 7.50 - 9.00 .00 - 10.50 .50 - 12.00 .00 - 13.50 .50 - 15.00 Pole Vectors 14.08% Fisher -	
	Co	unting Circle Size	1.0%	
	Color	Din Di	n Direction Lab	nel
	COIOI	Mean Set P	lanes	
1m		53	31 J2	
2m		42	204 J1	
3m		63	299 J3	
4m		76	169 J4	
	Plot Mode		Pole Vectors	
	Vector Count		40 (40 Entries)	
		Hemisphere	Lower	
		Projection	Equal Area	

Summarizing the joint sets for one selected formation from the surface survey mapping results

Geostructural analyses - Limit Equilibrium Methods - UNWEDGE

Stress analyses

Lombardi's in-house GRC evaluation tool

- M-C criteria with strain softening or strain hardening;
- Dilatancy as a function of plastic strain
- Rock swelling
- Effect of gravity: curves for displacement on crown level, side wall and invert;
- Systematic bolting
- Rock around the tunnel with different parameters consolidation grouting or of blasting damages
- The ground reaction curve at the tunnel face
- Output as AutoCAD file and a text report

Stress analyses

Tunnel	Section Type	Wedge Load [kPa]	Equilibrium Pressure [kPa]	Water Pressure [kPa]	Remarks
MT	A2	120	-	50	
	B1, B2	120	130	50	
	C1	-	200	50	
	C2	-	200	50	
	C2b	-	400	50	- A 5.0 m water head is considered in all cases for final lining design
	D	-	120	50	The equilibrium process is the same
ET & CP	А		-	50	as that considered for primary lining
	В	-	60	50	with ULS load factor 1.35
	C & Cb	-	110	50	- B2 is checked for wedge load cases
Layby	A & B	-	120	50	also as it is a transition case from geo-
	С	-	200	50	structural controlled and stress-
	S	-	550	50	
FFP/ Home Signal	В	-	150	50	

Basic Design Solution

Basic Design Solution

Mainly for stress-controlled failures Rock bolts swellex type (or equivalent) L 4 6 m (If necessar) elemente v16 (ar ecal-calent Steel ribs (see notes) in the dameter 110 till me noitudinal spacing 1.0 -1.5 m L = 12 m, overlapping 6 m -Shotcrete 150 mm with steel whe mesh + smoothing layer 50 mm Steel right (see hotes) interfact has specific in 4+4 Rock (see note Ĺ=4 m (If necess ± 0.00 R.L. -0.650 F.L. Plo 4 dealerage places 1. • 18 cm ige pipes L = 18 m no diameter 100 mm i dlameter 100 mm overlapping 6 m.

Steel arch with shotcrete (bolts if required)

Forepoling and Steel arch with shotcrete (bolts if required) – in case pre support is required – stability before the next blast round

± 0,00 PU

Lombardi

Support types 3 and 4 :

with high laster 50 mil

Self-through the local sectors and 77 pea, L = 12 m

CONTRACT INVESTIGATION

a - 1623

Basic Design Solution

<u>Support types 5 :</u> Mainly for stress-controlled failures – yielding support – for squeezing or caving in situations

Support type	Hazard scenario	Verification procedure	Structural adequacy	
A2	Block instability	Unwedge	STATIK and FAGUS	
B1	Block instability	Unwedge	STATIK and FAGUS	
Do	Block instability	Unwedge		
B2	Earth pressure	Ground reaction curve	STATIK and FAGUS	
C1	Elasto - Plastic or Plastic Deformations	Ground reaction curve	STATIK and FAGUS	
	Unstable face	Excel Calculation		
C2	Unacceptable deformations	Ground reaction curve	STATIK and FAGUS	
	Unstable face	Excel Calculation		
C2b	Squeezing, unacceptable deformations	Finite Element Analyses	FAGUS	
	Unstable face	Excel Calculation		
S2, S3 and	Risk of collapse, full face excavation not	Finite Element Analysis FAGUS		
	μοσοισια	Pre-support		

FEM Model of the support with TH ribs – C2b

Evaluation of support capacity in PLAXIS

🕒 Lombardi

Pre support – Forepoling/ Spilling

Pre-Support - Face Stability

Lombardi

Vertical pressure at the face has been evaluated by using the Terzaghi analytical models

Final / Permanent Support

Load Combinations

Load Cases	Description
Case 1	Self-Weight + Lining Pressure + Water Pressure
Case 2	Self-Weight + Ballast Load + Traffic Load
Case 3	Self-Weight + Lining Pressure + Water Pressure + Ballast Load + Traffic Load
Case 4	Self-Weight + Lining Pressure + Ballast Load + Traffic Load

ULS Load Factors

Combination	Solf Woight	Lining Pressure/Asymmetrical	Water
Combination	Sell-Weight	Wedge load	Pressure
Comb. 1	1.35	1.35	1.35

SLS Load Factors

Combination	Solf Woight	Lining Pressure/	Water	Temperature
Combination	Sell-Weight	Asymmetrical Wedge load	Pressure	load
Comb. 1	1.0	1.0	1.0	
Comb. 2	1.0	1.0	1.0	0.5

Lombardi

TAI International Conference / 24.06..2022 - 48

Section force Vz [kN] for: C-EP100_N1

Final / Permanent Support

Other Checks

- Minimum cover
- Limit State Collapse in shear
- Crack width calculation/ serviceability checks
- Minimum lap and development of the reinforcement

Unit	γ _{sat} (kN/m³)	E' (MPa)	v' (-)	c' (kPa)	Φ' (°)	K ₀ (-)
QD	19.0	E' = 20 +1.0 z z ≤ 20m E' = 40 z > 20m	0.3	0	33	0.46
SG	26.5	430	0.3	200	41	1.1
ASG	24	120	0.3	30	33	0.46

- Between Ch 6+800 and Ch 7+700 approx.
- Quaternary Sediments: pebbles in silty sand matrix
- Siwalik Group: sedimentary rock of clastic origin (siltstone, sandstone, conglomerate) with variable and uncertain level of compaction, cementation and lithification

Guidelines for the application of the typical section

Zone	Chainage	S1	S2	S 3
Z1	6+800 to 7+250	0%	70%	30%
Z2	7+250 to 7+550	10%	20%	70%
Z3	7+550 to 7+700	50%	40%	10%
Total m	900m	105	435	360

				Drovalant	Radial displacements		Axial force	
Tunnel	Material GSI O/b	O/b	typical section	Maximum expected value	Alarm value	Maximum expected value	Alarm value	
-	-	-	m	-	mm	mm	kN/m	kN/m
MT	SG	>30	55	S1	15	25	1950	2400
МТ	ASG	<=30	55	S3	60	70	2050	2500
MT	QD	-	50	S2	30	40	1670	2000
MT	QD	-	20	S2	15	25	720	1000
ET	SG	>30	55	S1	15	25	1140	1500
ET	ASG	<=30	55	S3	30	40	1090	1500
ET	QD	-	50	S2	15	25	880	1200
ET	QD	-	15	S2	15	25	310	500

Pre-support : Canopy techniques

Pre-support : Canopy techniques – jet grouting columns

- (a) Reinforcement of the tunnel contour by jet grouting and/or steel micropiles
- (b) Excavation
 -) Excavation completed
- (d) Face rnfmt by jet grouting and/or fiberglass bars or tubes (optional)

Section type S1

- Face stabilisation with injected GFRP bolts Φ60/40, 18m long
- No contour stabilization, nonvarying section

Primary lining

 Primary lining in sprayed concrete (SC) with 2xISMB 250 steel ribs at 1m spacing

Secondary lining

- Reinforced concrete

Tunnel in soil (Quatenary and Siwalik Group with GSI >30)

Tunnel in soil (Quatenary Group)

Section type S2 – Jet-grouting

- Face stabilisation with Φ450mm JG columns reinforced with GFRP bolts, 20m long
- Contour stabilisation with Φ600mm JG columns, 20m long

Primary lining - sprayed concrete (SC) with 2xISMB 250 steel ribs at 1m spacing

Secondary lining - Reinforced concrete

Section type S2 – Jet-grouting

- Face stabilisation with grouted GFRP bolts Φ60/40, 18m long
- Contour stabilisation with grout-injected GRP hollow bolts 60/40 mm, 18m long

Primary lining - sprayed concrete (SC) with 2xISMB 250 steel ribs at 1m spacing

Secondary lining - Reinforced concrete

Guidelines for the application of the typical section

- For each geotechnical formation, the prevalent typical section will be applied as a starting point.
- ➤ Measured value of displacements <= ~50% of expected value → proceed with same section</p>
- ➤ Measured value of displacements << ~50% of expected value → possibility to adopt a lighter typical section
- ➤ Measured value of displacements/ stresses > ~50% of expected value and <alarm value → possibility to adopt a heavier section</p>
- ➤ Measured value of displacements/ stresses > alarm value → adopt a heavier section, increase the frequency of monitoring, or evaluate new heavier

Stress analyses – Plaxis, stress analysis of continuum – FEM

Main Tunnel in Quaternary

Primary lining, steel ribs and hardened sprayed concrete + Temporary invert

Secondary lining installation and long-term condition (groundwater load)

Main Tunnel in Siwalik Group

Primary lining, steel ribs and hardened sprayed concrete + invert excavation

🕒 Lombardi

Stress analyses – Plaxis, stress analysis of continuum – FEM

- ✓ For the main tunnel in QD, displacement is about 6 cm, part of this (~ 3 cm), will happen ahead of the tunnel excavation, and can't be measured during the monitoring phase
- Part of the heave at the bottom of the excavation can be unrealistic effect due to the relative low stiffness of the modelled soil in unloading phase
- The consolidated ground around the excavation behave mainly elastically.
 Plasticity develop mainly at the bottom of the temporary lining base, but the collapse condition is far
- The monitoring system will be used to confirm the calculation hypothesis, with an observational approach, as it will be described better hereafter.

60

Summary of the application principle

The table below represents the anticipated excavation behavior and hazards with respect to RMR classes and overburden

DMD	Overburden									
RIVIR	0 - 50	50 - 200		200 - 400		400 - 600		600 - 800		
					Stable exc	cavation ⁽¹⁾				
					(A1,	A2)				
80 - 100							Stable	e excavatio	excavation with	
			potential				ntial Rockb	ourst*		
			Otable e				(1) 8 (2)	(A1)		
			Stable e	xcavation, s		able wedg	es (1) ∝ (2)			
60 90					(AZ)		Stabla	rook with n	otontial	
00-00							Stable	i minor Po	oleniiai okburet*	
							Spanne	(A1 A0)	CKDUISI	
	Unstable wedges ⁽³⁾									
	(A2, B1)									
40 60	Unstable wedges, elasto-plastic deformation ⁽⁴⁾									
40 - 60	(B2, C1)									
			Plastic deformations ^{(4) & (5)}							
						(C1, C2)				
	Unacceptable def	ormations, u	unstable							
	fac	;e (³)								
20 - 40	((∠ر)		Sai		accontable	deformativ			
			Squeezing, unacceptable deformations,							
					unsi	(C2 C2h)				
Soil /	Risk of collapse, fu	II face exca	vation not	oossible wi	thout count	ter measure	es (5) or (6)			
Fault			(S2, S	53, D)						
40 - 60 20 - 40 Soil / Fault	Unacceptable defo fac (0 Risk of collapse, fu	Drmations, u e (5) C2) Il face exca	(B2, unstable vation not (S2, S	C1) Squ possible wir S3, D)	Plastic of leezing, un unst	deformation (C1, C2) acceptable table face ^{(\$} (C2, C2b) ter measure	DS (4) & (5) deformatic 5) or # ES (5) or (6)	ons,		

Monitoring - Underground

Distribution along the tunnel

Expected support classes

Class	Length [m]	%	
S2	444.4	4.1	
S3	461.0	4.2%	
A2	958.4	8.8%	
B1	3329.4	30.7%	
B2	2996.8	27.6%	
C1	1660.2	15.3%	
C2	568.3	5.2%	
C2b	332.5	3.1%	
D	99.0	0.9%	

Thank you

🕒 Lombardi