Workshop on Observational Approach in Tunnelling: Evolvement, Issues and Challenges. 24th – 25th June 2022 Mumbai

> Use of Steel Fiber for Segmental Lining Steel Fiber Reinforced Concrete

better together

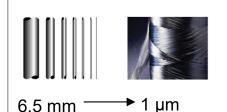
Amit Kaul Jaswant Singh Chandan Vaidya

25th June 2022

Who Are We

Bekaert In A Nutshell*

- □ Founded In 1880 By Leo Leander Bekaert
- Customers In 120 Countries And In The Most Diverse Industry Sectors
- Global Manufacturing Platform
- 28 000 Employees Worldwide
- Combined Sales Of 5 Billion Euro
- □ Consolidated Sales Of 3.3 Billion Euro
- Listed On Euronext[®] Brussels

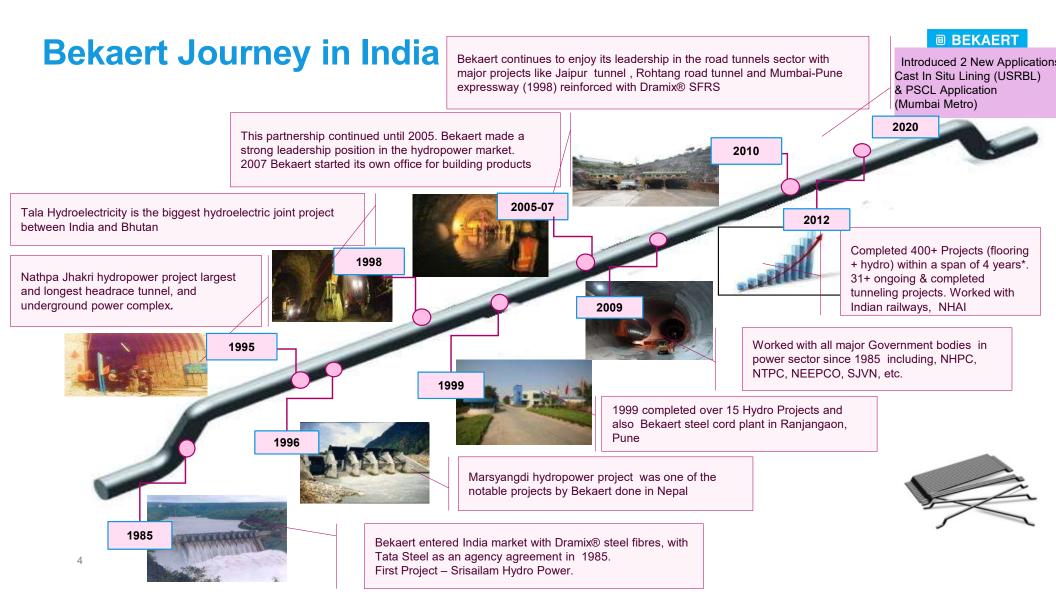

Bekaert Is A Worldwide Player Active In Selected Applications

Based On Our Two Core Competences

- □ Advanced Metal Transformation
- Advanced Materials And Coatings

BEKAERT

A human hair = 50 µm



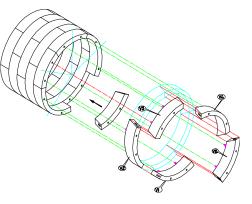
From traditional coatings to advanced coatings

History

BEKAERT
 better together

pio	neering	inı	novating	gr	owing	di	versifying	BI	RIC tra	ans	forming
1 1	880	+	1952	+	Early 1970s	•	Early 1980s	1	993	20	013
s	eo Leander Bekaert itarts a small business n barbed wire in Zwevegem, Belgium		Steel cord production start		New steel cord plant openings and expansions in US, Brazil, Belgium, Japan		Bekaert moves into composite materials, non-ferrous forged products, vacuum coatings and filtration	h b	ekaert recognizes China's uge market potential and uilds a first steel cord plant i Jiangyin, Jiangsu Province	ar ex	ekaert lifts its ambition level id deploys global icellence programs across e business
1	922	-	1964	1	1972	1	1988	l N	lid 90s	20	014-2016
i a	First investment abroad: Tréfileries de Bourbourg, France		Establishment of R&D center in Deerlijk, Belgium		Listing on the Brussels stock exchange to fund continued growth		New plant openings in the US in response to local demand	¦ ir	ivestments and expansions Brazil, India, Indonesia, hina, Peru and Chile	ac	ekaert concludes its largest equisition (Pirelli) and merger ridon) ever
1	948	ł	1965	1	1975-1977	1	1990	2	000-2010	20	020
1 1	First investments in atin America: Argentina and Chile		Start-up of Engineering facility for machine design and manufacture		Establishment of joint ventures in Ecuador and Brazil		Bekaert has become a truly international company with 15000 employees worldwide	; c	trong growth in China, entral Europe, and start-up roduction in Russia	se	ekaert delivers on all priorities et forth and counters the apact of the pandemic

Modern Trends in Tunneling


Conventionally Tunneling Was Always Considered In Mountains And Long Term (Time Consuming)
 Projects Due To Limited Resources And Technologies.

- With Increased Demands And Modern Techniques, The Tunneling Is Becoming Essential Part Of Infrastructure Development.
- With Increased Demands, Various New Methods Have Been Brought For Timely Completion With Minimum Possible Investments
- Tunnel Boring Machines (TBM's) Have Thus Become One Of The Ideal Resource As An Alternative Method To Conventional Drill & Blast (D&B) Tunneling In Variety Of Geological Conditions Varying From Very Hard Rock To Poor/ Squeezing Ground Conditions.
- TBM Has Advantage Of Limiting The Disturbance To Surrounding Ground And Produce Smooth Tunnel Wall Resulting In Significant Reduction In The Lining Costs And Makes Them Suitable To Use In Heavily Urbanized Areas And Significant Benefits In Long Mountainous Tunnels.

Advantages TBM Tunneling

- TBM Best Suited For Long Tunnels In Mountains- Continuous Boring & Lining Installation
- Most Suitable Options For Urban Tunnels
- Reduced Cost Of Lining- Uniform & Pre-cast
- Faster Construction- Project
 Completion Time
- Safe

Basic Requirements of Lining Segment

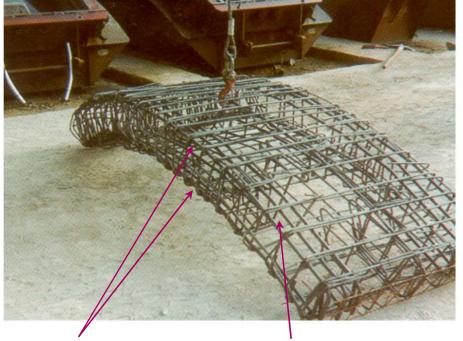
Hardened Properties

- Durability
- Strength
- Longevity
- Finish

- Load Bearing & Load Transfer
- Removal From Mold And Stacking For Curing
- Transportation From Yard To Site
- Repair & Maintenance
- Plastic Properties
 - Ease Of Placing
 - Early Strength Development

Current Practices....

Conventional Reinforcement


• Rebar Cages- Typical Reinforcement for Segments

Current Practices....

Conventional Reinforcement

• Rebar Cages- Typical Reinforcement for Segments

Top And Bottom Mats

Stirrups Welded To The Mats

Heavy Reinforcement With Rebars: From 70 To 120 Kg/M³

The Reinforcement Cage Has To Resist:

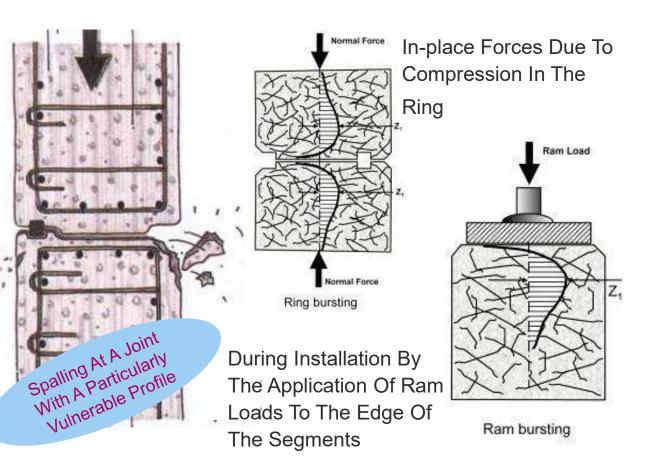
- Demolding Forces
- Stacking Forces
- Transportation
 Forces
- Spalling Forces
- Jacking Forces

BEKAERT better together

Possible Considerations...

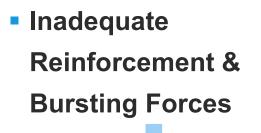
Cycle Times:

- Cage Construction- Time & Labor Intensive
- Installation of
 Reinforcement
- Land Requirements:
 - Sufficient SpaceReinforcement Yard
 - Casting Yard
- Concrete Placement:
 - Dense Reinforcement
 - Low Slump Concrete
- Segment Quality:
 - Cage Placement in Mold-Determine Quality


Possible Considerations...

Inadequate Reinforcement:

- Minimal Concrete Cover Requirement For Corrosion-Combined With-
- "Particular" Edge Shape-Leads To-
- Vulnerable Edges (Cover)


Bursting Forces

 Due To 2 Different Types of Loads

BEKAERT

Possible Considerations...

Leading To High RepairsDurability?

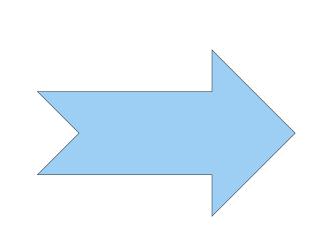
?How Long Will You Guarantee This Repair?

12

Summary Issues & Challenges

Current Systems With Re-bars Have Following Challenges:


- Need Big Space For Storing Reinforcement And Fabrications
- COVER- 40 or 50 mm- Most Vulnerable ...
- Depending Upon Design Requirements Segments Can Have Congested Reinforcement Cages- Quality Of Segments?
- Handling Reinforcement Cages- Need Additional Resources (Manpower, Machines, Etc.)
- Low Workability Concrete (Mold Design, Surface Finishing, Etc.)- Durability?
- High Degree Of Compaction Needed To Achieve Maximum Density & Especially In Thickly Reinforced Segments (Honeycombing, Etc. Segment Rejection)- Durability?


Consequences:


- Large Area Casting Yards Needed
- Additional Contractors For Bar Bending & Reinforcement Cage Manufacturing
- Additional Resources For Reinforcement Installation In Molds
- Increased Cycle Times- Project Timelines Over-run....

How To Mitigate The Risks.....

By Replacing Steel Re-bars With Dramix® Steel Fiber For Segmental Lining

BEKAERT

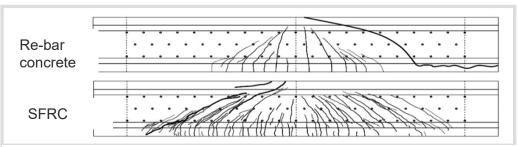
Wt. of Rebar's varies 70- 120 Kg /Cum

Dramix® 4D 80/60 BG Fiber Dosages 25 – 40 Kg/Cum

Why Steel Fibre Reinforced Concrete?

Constructive

- Avoid Conventional Reinforcement (Mesh, Rebars)
- Labor Reduction
- Reduction Of Checking Time
- Reinforcement Correctly Placed


Structural

15

- Smaller Crack Width Openings
- Higher Durability
- Higher Impact And Abrasion Resistance
- Higher Fatigue Strength

Cracking Control

- The Fibers Sew The Cracks And Redistribute The Tensile Stresses In A Larger Concrete Area.
- Reduce The Crack Width And Spread The Cracking Due To Loads Or Constraints.
- Prevent Rebar Corrosion, Stop Water Paths, Better Aesthetic Presentation, Prevent Spalling Due To Load Or Impacts.
- Increase Of Durability.

Results In A Shear Test Of A Full Scale Beam

We Replace.... We Will Just Add Fibers As Per Design Dosages At Batching Plant

Why To Reinforce Concrete.....

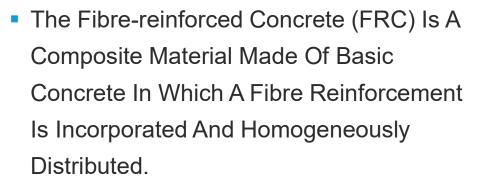
Understanding Concrete Behavior...

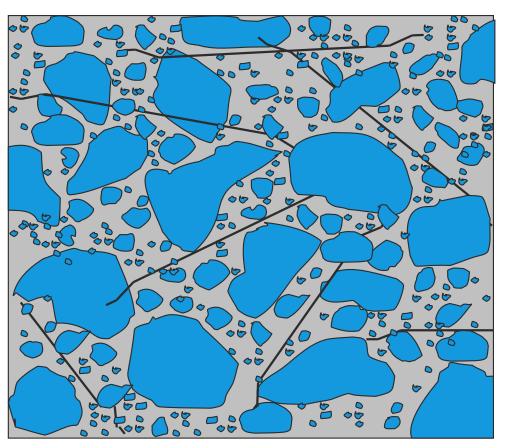
The Principle Of Concrete Reinforcement

- Concrete Is Naturally BRITTLE And Has Low Tensile Strength And Ductility. When Subjected To Tensile Stresses, Unreinforced Concrete Will Crack And Fail.
- In Order To Change This Brittle Behaviour Into A More Ductile Behaviour, Mesh, Rebar Or Steel Fibres Are Added. The Role Of The REINFORCEMENT Is To Increase Load Bearing Capacity And Limit Crack Opening.

Why To Reinforce Concrete.....

Understanding Concrete Behavior...


Nothing Is Less True! Discover Why Steel Fibres Are The Perfect Alternative To Mesh Or Rebar Reinforcement In Many Applications.


Steel Fibre Reinforced Concrete V/s Conventional Rebar Concrete

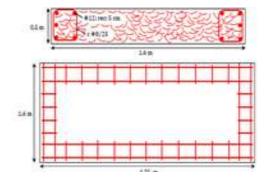
Introduction to Steel Fibre Reinforced Concrete

- Steel Fibres Are Discrete, Discontinuous
 Pieces Of Reinforcement
- Steel Fibres Add Ductility To An Otherwise Brittle Concrete

Solution We Always Choose...

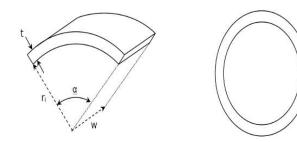
- Faster
- Safer
- Easy to Use
- Economical
- Durable

How Will We Change


Possible Solutions:

SFRC Only

Combined Solution: Low Amount Of Rebars For Critical Bending Moment + SF

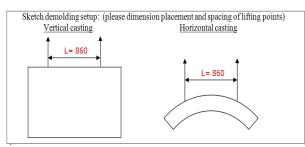

Combined Solution: Low Amount Of Rebars For Bursting + SF

How Will We Change

Design Inputs.....

1. SEGMENT INFORMATION

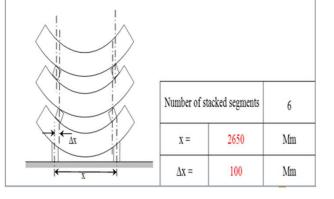
Thickness	t =	300	mm
Inner radius	r _i =	4600	mm
Width	w=	1600	mm
Angle	α =	56.842 (1to6) 18.948 (key)	degrees
Number per ring	n =	7	



2. CONCRETE INFORMATION

Compressive strength at 28 days	fc	50	Mpa
Flexural strength at 28 days	f _{r28}	5	Mpa

3. DEMOLDING


Compressive strength during demolding	f _{c,dem}	12	Mpa
Flexural strength during demolding	$\mathbf{f}_{\mathrm{r,dem}}$	2.42	Mpa

4. STACKING (only for horizontal stacking)

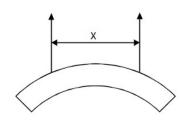
Compressive strength during stacking	f` _{c,stack}	25	Мра
Flexural strength during stacking	f _{r,stack}	3.5	Mpa

Sketch of setup: (please dimension placement and spacing of stacking points)

5. TBM DATA

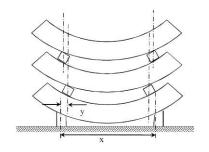
Hard Roo	:k TBM		
Shoe leng	gth	L _r =	1000 mm
Number of jacks per ring		=	19
Operating	thrust force/jack shoe	=	1250 kN
Total ope	rating thrust force	=	23750 kN
Maximum	thrust force/jack shoe	T _r =	1500 kN
Total max	timum thrust force	=	28500 kN
NOTE:	maximum ram thrust is the g	reater of the	
	total maximum thrust force o	r 1.2 x total opera	ting thrust force
.: Desian	Ram Thrust	=	28500 kN

BEKAERT


6. NORMAL AND BENDING FORCES IN THE SERVICE STATE

Unfactored		
Thrust at axis	T _a =	2378 kN/m
Thrust at crown	T _c =	2378 kN/m
Bending moment	M =	0 kNm/m
Factored		
Thrust at axis	T _{af} =	3174 kN/m
Thrust at crown	T _{cf} =	3174 kN/m
Bending moment	M _f =	0 kNm/m

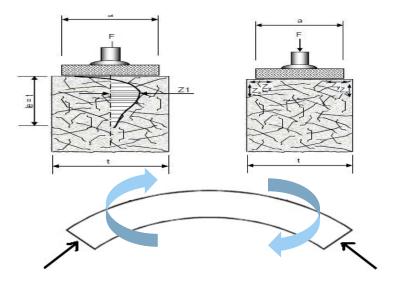
How Will We Change


Demoulding Stresses

Critical Moment Occurs For The Cantilever End
 Portion

Stacking Stresses

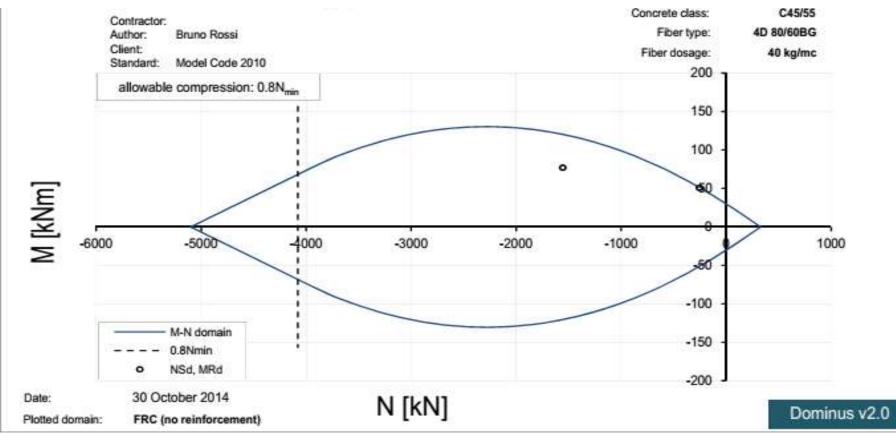
- Critical Moment Due To Batten Misalignment (Y)
- Critical Shear Due To Large Stacking Height Above



In- Service Stresses

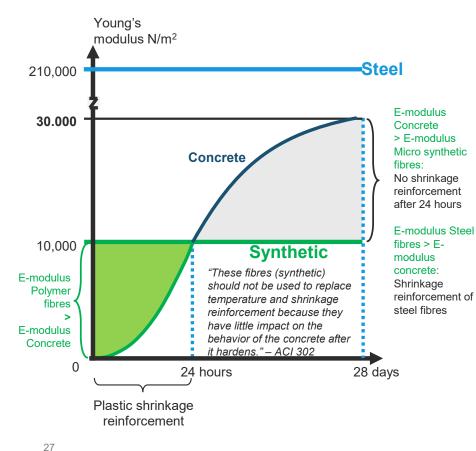
 Section Forces Generated By The Ground, Gantry, Rail Load And Other Hoop Stresses

BEKAERT


 Sections Designed As Columns Under The Combined Action Of Axial Forces And Moments.

BEKAERT better together

Our Proposal


Design Using M-N Interaction

Fibre Reinforced Concrete?

PP Micro- Fibers For Plastic Shrinkage Control ...

Micro-synthetic Fibres Have Only A Plastic Reinforcement Effect In The First 24 Hours When Their Young's Modulus Exceeds The Fresh Concrete Young's Modulus.

Material	Young's Modulus
Concrete	+/- 30 GPa
Micro synthetic fibres	+/- 4 GPa
Macro synthetic fibres	3-10 GPa
Steel fibres	210 GPa

"In a composite material such as fibre concrete, a reinforcement effect can only be obtained when the reinforcing fibre has a higher Young's modulus than the base material."

Fibre Reinforced Concrete?

... And For Passive Fire Protection

Fire Damage In Gotthard Tunnel, 2001

Fibre Reinforced Concrete (FRC)?

Plain Concrete	
340 Mm Spalling Depth (RABT Fire Curve)	

2 KG PP Fibre RC 15 Mm **BEKAERT**

Case Study- CMRL

BEKAERT
 better together

A Full-Scale Test Program On SFRC Segments To Ascertain The Validity Of Design

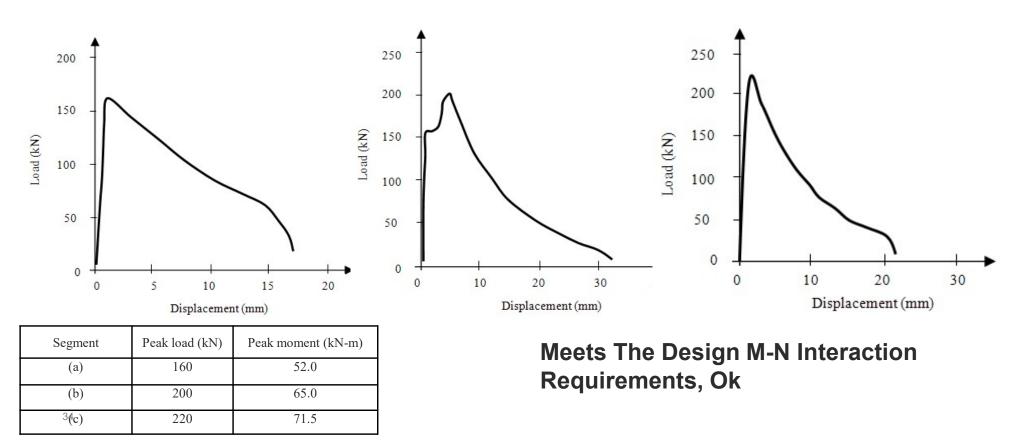
- 3 Field Scale Specimen Checked For Flexural Stresses
- 3 Field Scale Specimen Checked For Bursting/Ram Forces
- Fibre Distribution Check On Hardened Specimen
- Fibre Condition And Distribution Check On Hardened Specimen After 2 Years Of Installation

Transverse Joints/ Ram Forces

Flexural Stresses

Tests Conducted At IIT Madras

Flexural Testing Of SFRC Segments


- Design Dosage = 35 Kg/m³
- Fibre Type = Dramix® 3D 80/60 CN
- Segment Arc Length = 1.79 M (Half Segment)
- Segment Supports = 1.2 M
- Maximum Loads And Moments Evaluated For 3 Specimen
- Actual Characteristic Flexural Stresses Of Segments Used For Plotting The M-N Diagram

BEKAERT

Tests Conducted At IIT Madras

Flexural Testing Of SFRC Segments

Bursting Check Of SFRC Segments

- Design Dosage = 35 Kg/m³
- Fibre Type = Dramix® 3D 80/60 CN
- Segment Arc Length = 1.79 M (Half Segment)
- Ram Shoe Size= 1000 MM X 150 MM
- 3 Specimen Tested For Bursting Compression
- Maximum Operating Load Of TBM Ram Shoe Location = 300 Tons (Design)
- Maximum Test Load = 380 Tons (1.25 Times The Design Load)

Meets The Design Requirements, OK

- Design Dosage = 35 Kg/m³
- Fibre Type = Dramix® 3D 80/60 CN
- 3 Cores Extracted From Each Specimen
- Average Fibre Content Reported
- All Values Lie Within The Prescribed Limits, Indicating Excellent Distribution Of Fibres In The Concrete Matrix

Segment	Average Fibre Content (kg/cu.m)
(a)	35
(b)	34.4
(c)	36.7

Meets The Design Requirements, OK

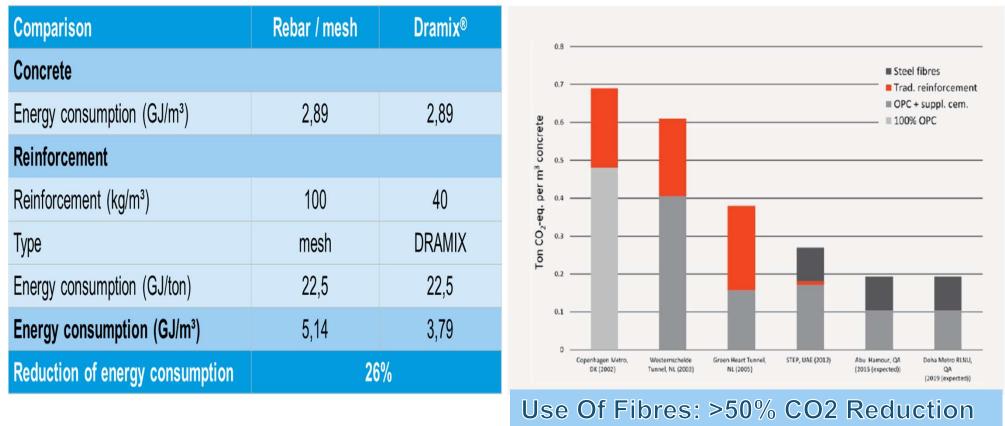
Case Study: Chennai Metro.....

Advantages

Technical Advantages

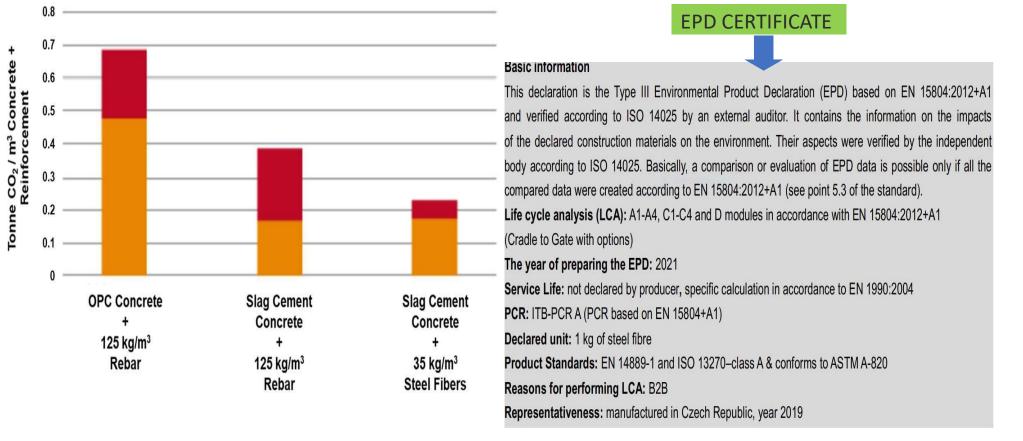
- High impact resistance
- Multidirectional reinforcement
- No damages at Edges and corner due to the spalling forces
- Post fire durability superior to rebar
- Fire protection in combination with micro- polypropylene fibre
- DURABILITY IMPROVEMENT

Economical Advantages


- Increase of productivity, time saving
- Reduction of repair cost of damage segments
- Elimination of storage and positioning of reinforcement cages
- Use of automatic dosing and dispensing equipment linked to the control panel of the batching

Cost Economics- Case Reference			BEKAERT better together
STEEL FIBRE REINFORCED CONCRETE SEGMENTS			
Unit cost Unit cost Unit Price Per Rs 1112 Or Fibres Enerth of damaged segments % of segments requiring Of Concrete % of segments requiring 201 Labr Cost/Hour Labr 18.75 Oct 0.25 Adri Saving 0.25 160/0 Cost/Segment			
Fibres	unit Price Par	$= R^{S}$	
Repair of damaged segments			ments for repair
CU- W		Cost/Hour	
Laha per		18.75	0.94
C coving .	0.25	1200.00	15.00
Adr. Sav	0.25	31.25	0.39
Adr. Savies 16% C materials	Cost/Segment	Total cost	
C materials	25.00	7030	1.25
Tot.cost/Cum Rs 5617.58			

Cost Economics- Green Solutions...



Dramix® Minimizes The Impact On The Environment -Using Less Steel

Cost Economics- Green Solutions...

Dramix® Minimizes The Impact On The Environment -Using Less Steel

References

LINE 14 North - 2 Paris Metro, Paris (France)

Entities Involved:

•

٠

•

- Owner: RATP (Paris Transport Administration)
- Designer:
- Systra
- JV Bouygues Bessac Soletanche Bachy Contractor:
- Precast Plant: JV Capremib - Bonna Sabla

Tunnel Parameters:

- Year Of Construction: 2015 - 2016 • 100
- Designed Lifetime (Years): •

Dimensions (M)

•	Internal Diameter	7,75
•	External Diameter	8,50
•	Total Length (Excavated)	2,2 Km
•	Quantity Dramix®	120 Ton

Segmental Lining Parameters

- Number Of Segments (Incl. Key): 7 Per Ring • 1,5 M X 1,8 M X 0,375 M
- Size Of Segments (L X W X T): ٠
- Concrete Quality: •
- Fiber Type: •
- Fiber Dosage: •

Other Information

• First Steel Fibre Reference In Sacrificial Segments For Metro In French Market

C40/50

40 Kg/M3

DRAMIX® 3D 80/60 BGP

LINE 16-1 Paris Metro, Paris (France)

Egis

100

8,70

9,50

16 Km

5,200 Ton

Eiffage Génie Civil

Bonna Sabla

2020 - 2021

Entities Involved

Owner: •

- Designer: •
- Contractor: •
- Precast Plant: •

Tunnel Parameters

- Year Of Construction: •
- Designed Lifetime (Years): •

Dimensions (M)

- Internal Diameter: •
- External Diameter: •
- Total Length (Excavated): •
- Quantity **Dramix**®: •

Segmental Lining Parameters

- Number Of Segments (Incl. Key): ٠
- Size Of Segments (L X W X T): •
- Concrete Quality: •
- Fibre Type: •
- Fibre Dosage: •

Other Information

First Important Reference In Definitive Segments In The French • Market

7 Per Ring 2 M X 4 M X 0,40 M C540/50 DRAMIX[®] 3D 80/60 BGP 40 Kg/M³

Société Du Grand Paris (SGP)

BEKAERT

hoto: Eiffage Genie Civil

Roma Metro Line C – T3 section, Rome (Italy)

2008-2021

6,10 M

6,70 M

2,8 Km

Entities Involved

- Owner : Società Roma Metropolitane
- Designer: Rocksoil S.P.A
- Contractor(s): Metro C S.C.P.A.
- Precast Plant: Vianini Lavori S.P.A.

Tunnel Parameters

Year Of Construction:

Dimensions (M)

- Internal Diameter:
- External Diameter:
- Total Length (Excavated):

Segmental Lining Parameters

- Number Of Segments (Incl. Key):
- Concrete Quality:
- Fiber Type:
- Fiber Dosage:

6+1 Per Ring C50 Dramix[®] 4D 80/60 BG 40 Kg/M³

Northern Line Extension, London (UK)

BEKAERT

Entities Involved

• Owner :	Transport For London (LUL)
Designer:	Mott Macdonald London
 Contractor(s): 	Ferrovial Laing O'rourke (FLO) JV
 Precast Plant: 	Morgan Sindall Ridham Dock

Tunnel Parameters

•	Year Of Construction:	2016-2019	
•	Designed Lifetime (Years):	120 Years	
•	Dimensions (M)		
	 Internal Diameter 		5.2 M
	 External Diameter 		5.7 M
	Total Length (Excavated)		5.2 Km
	Length Of DRAMIX [®] Rein	forced Section	5.2 Km

Segmental Lining Parameters

 Number Of Segments (Incl. Key): 	6no
 Size Of Segments 	3.63 Mx1.50 M X 0,25 M
Concrete Quality:	C50/60
 Fiber Type: 	DRAMIX [®] 4D 80/60BG
 Fiber Dosage: 	30kg/M ³

Other Information

Reading Sands And Gravels – Some Water Bearing And Some Clays

Heathrow Piccadilly Line Extension, London (UK)

BEKAERT

Entities Involved

- Owner : Transport For London (LUL)
 - Designer: Miller Tunnelling Ltd
- Contractor(s):
 Miller Tunnelling / Vinci Grand Projets JV
- Precast Plant: Miller Precast Ltd Ridham Dock

Tunnel Parameters

- Year Of Construction: 2004
- Designed Lifetime (Years): 120 Years
- Dimensions (M)

•	Internal Diameter	4.52 M.
•	External Diameter	4.82 M
•	Total Length (Excavated)	2.5 Km

Length Of DRAMIX[®] Reinforced Section 2.5 Km

Segmental Lining Parameters

- Number Of Segments (Incl. Key):
- Size Of Segments
- Concrete Quality :
- Fibre Type
- Fiber Dosage:

Other Information

London Clay

46

7+1 = 8 Total 2.0 M X 1.0 M X 0,15 M C50/60 DRAMIX[®] 3D 80/60BG 30 Kg/M³

JLE – Jubilee Line Extension (C103), London (UK)

Entities Involved

 Owner : Designer: Contractor(s): Precast Plant: 	Transport For London (LUL) Babtie Consulting London Aoki/Soletanche JV & Costain Taylor Woodrow JV Charcon Tunnels
Tunnel Parameters	
 Year Of Construction: 	1996
 Designed Lifetime (Years): 	120 Years
 Dimensions (M) 	
Internal Diameter	4.45 M
External Diameter	4.85 M
 Total Length (Excavated) 	1.2 Km
 Length Of Dramix[®] Reinforced Section 	1.2 Km

Segmental Lining Parameters

•	Size Of Segments (L X W X T):	1.373 M & 1.424m X 1.0 M
	Number Of Segments (Incl. Key):	8+2 = 10

- Concrete Quality:
- Fiber Type:
- Fiber Dosage:

Other Information

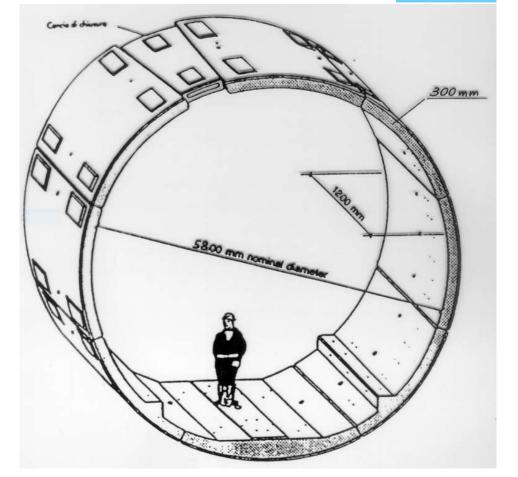
London Clay

1.373 M & 1.424m X 1.0 M X 0.200 M C50 Dramix[®] 3D 80/60 BG 30kg/M³

Metrosud, Napoly (Italy)

Entities Involved

• Owner :	Metro Napoly	
Designer:	ROCKSOIL	
 Contractor(s): 		
Tunnel Parameters		
Year Of Construction:	1992	
 Designed Lifetime (Years): 		
 Dimensions (M) 		
Internal Diameter	5.80 Lm	
External Diameter	6.10 Lm	
 Total Length (Excavated) 	15295 Lm	
 Length Of DRAMIX[®] Reinforced Section 	3000 Lm	


Segmental Lining Parameters

- Number Of Segments (Incl. Key):
- Size Of Segments (L X W X T):
- Concrete Quality:
- Fiber Type:
- Fiber Dosage:

Other Information

Volcanogenic Soils, With Tuff And Pozzolan

10 (Total Or Per Ring)
1,85 M X 1,2 M X 0,3 M
C50
DRAMIX [®] 3D 65/50 BG
40kg/M ³

BEKAERT

Nice Tramway, Nice (France)

Entities Involved

•	Owner :	NICE MUNICPALITY
•	Designer:	SETEC
•	Contractor(s):	BOUYGUES
•	Pre-caster	STRADAL
Tu	nnel Parameters	
•	Year Of Construction:	2016
•	Designed Lifetime (Years):	100
•	Dimensions (M)	
	Internal Diameter	8.5 M
	External Diameter	8.9 M
	Total Length (Excavated)	2930 M
	 Length Of DRAMIX[®] Reinforced Section 	400 M

Segmental Lining Parameters

•	Number Of Segments (Incl. Key):	8
•	Size Of Segments (W X T):	1,6 M X 0,40 M
•	Concrete Quality:	C40/50/
•	BG Fiber Type:	DRAMIX [®] 4D 80/60 BG
•	Fiber Dosage:	40kg/M ³

Other Information :

In Accordance With The *Fib* Ceb-fip Model Code 2010, The Structural Design Of Sfrc Elements Is Based On The Post-cracking Residual Tensile Strength Provided By The Steel Fibers . The Performance Class 4c Is Required BEKAERT
 better together

Expolink Dubai Route 2020, Dubai (UAE)

Entities Involved

• Owner :	Dubai Municipality
Designer:	Parsons Systra
 Contractor(s): 	JV Acciona - Gulermak
Precast Plant:	Dubai Precast
Tunnel Parameters	
Year Of Construction:	2017
 Designed Lifetime (Years): 	120
 Dimensions (M) 	
Internal Diameter	8,50 M
External Diameter	9.30 M
 Total Length (Excavated) 	2,8 Km
Quantity DRAMIX [®]	1.200 Ton
Segmental Lining Parameters	
 Number Of Segments (Incl. Key): 	7 Per Ring
 Size Of Segments (L X W X T): 	3 M X 1,6 M X 0,40 M
 Concrete Quality: 	C45/50
Fiber Type:	DRAMIX [®] 4D 80/60 BG

• Fiber Dosage: **Other Information**

Epoxy Coating On Top Of Each Segment

120
8,50 M 9.30 M 2,8 Km
1.200 Ton
7 Per Ring
3 M X 1,6 M X 0,40 M
C45/50
DRAMIX [®] 4D 80/60 BG

40 Kg/M³

BEKAERT

Doha Metro Green Line, Doha (Qatar)

JV Porr - Saudi Binladin - HBK (Local)

7 Per Ring

C40/50

40 Kg/M³

2 M X 4 M X 0,35 M

DRAMIX[®] 4D 80/50 BG

Qatar Rail

JV Plant At Site

2013 - 2014

120

7.10 M

7,80 M

34 Km

7.000 Ton

D&B By JV Contractors

Entities Involved

•	Owner	;
•	Owner	1

Designer:

- Contractor:
- Precast Plant:

Tunnel Parameters

- Year Of Construction:
- Designed Lifetime (Years):
- Dimensions (M)
 - Internal Diameter
 - External Diameter
 - Total Length (Excavated)
 - Quantity DRAMIX®

Segmental Lining Parameters

- Number Of Segments (Incl. Key):
- Size Of Segments (L X W X T):
- Concrete Quality:
- Fiber Type:
- Fiber Dosage:

Other Information

- First Time Design Following Model Code.
- Very Hot Temperature And Geological Chemical Aggressive Environment

51

Circle Line 6 C882, Singapore (Singapore)

Entities involved

	0	
	Owner :	Land Transport Authority
	Designer:	AECOM
	Contractor(s):	CSCEC-Nishimatsu JV
1.1	Precast plant:	SPC Precast
Tunr	nel parameters	
	Year of construction:	2018
. •	Designed lifetime (years):	120
•	Dimensions (m)	
•	Internal diameter	5.8 m
•	External diameter	6.35 m
•	Total length (excavated)	1200 m
•	Length of DRAMIX [®] reinforced section	1200 m
Segr	nental lining parameters	
	Number of segments (incl. key):	7+1
	Size of segments (L x W x T):	2.6 m x 1.4 m x 0.275 m

- Size of segments (L x W x T):
- Concrete quality:
- Fiber type:
- Fiber dosage:

7+1 2.6 m x 1.4 m x 0.275 m C50/60 DRAMIX[®] 3D-80/60-BGP & DUOMIX M6 Fire 40 kg/m³ & 1 kg/m³

Circle Line 6 C885, Singapore (Singapore)

Entities involved

	Owner :	Land Transport Authority
•	Designer:	AECOM
. •	Contractor(s):	China Railway Tunnel Group
. •	Precast plant:	SPC Precast
Tunr	nel parameters	
. •	Year of construction:	2018
. •	Designed lifetime (years):	120
. •	Dimensions (m)	
•	Internal diameter	5.8 m
•	External diameter	6.35 m
•	Total length (excavated)	1200 m
•	Length of DRAMIX [®] reinforced section	1200 m
Segr	mental lining parameters	
. •	Number of segments (incl. key):	7+1
	Size of segments $(I \times W \times T)$	2 6 m x 1 4 m x 0 275 m

- Size of segments $(L \times W \times T)$:
- Concrete quality:
- Fiber type:
- Fiber dosage:

2.6 m x 1.4 m x 0.275 m C50/60 DRAMIX[®] 3D 80/60 BGP & DUOMIX M6 Fire 40 kg/m³ & 1 kg/m³

North East Line extension C715, Singapore

Entities involved

• Owner :	Land Transport Authority
 Designer: 	CSCEC
 Contractor(s): 	CSCEC
 Precast plant: 	SPC Precast
Tunnel parameters	
 Year of construction: 	2018
 Designed lifetime (years): 	120
 Dimensions (m) 	
Internal diameter	5,8 m
External diameter	6.35 m
 Total length (excavated) 	0.71 km
 Length of DRAMIX[®] reinforced section 	0.71 km
Segmental lining parameters	
 Number of segments (incl. key): 	7+1
 Size of segments (L x W x T): 	2.6 m x 1.4 m x 0.275 m
Concrete quality:	C50/60

Concrete quality:

- Fiber type:
- Fiber dosage:

2.6 m x 1.4 m x 0.275 m C50/60 DRAMIX[®] 3D 80/60 BGP & DUOMIX M6 Fire 40 kg/m³ & 1 kg/m³

BEKAERT

Thomson Line T206, Singapore

Entities involved

 Owner : Designer: Contractor(s): Precast plant: 	Land Transport Authority ARUP Singapore Shanghai Tunnel Engineering Co. (Singapore) Pte Ltd SPC Precast
Tunnel parameters	
 Year of construction: 	2016
 Designed lifetime (years): 	120
 Dimensions (m) 	
Internal diameter	5,8 m
External diameter	6.35 m
 Total length (excavated) 	2800 m
 Length of DRAMIX[®] reinformation 	prced section 2800 m
Segmental lining parameters	
 Number of segments (incl 	l. key): 7+1

- Size of segments (L x W x T):
- Concrete quality:
- Fiber type:
- Fiber dosage:

2.6 m x 1.4 m x 0.275 m
C50/60
DRAMIX® 3D 80/60 BGP & DUOMIX
M6 Fire
40 kg/m ³ & 1 kg/m ³

Thomson Line T207, Singapore

Entities involved

• Owner :	Land Transport Authority
Designer:	TY Lin Singapore
 Contractor(s): 	Shimizu Corporation
 Precast plant: 	SPC Precast
Tunnel parameters	
 Year of construction: 	2016
 Designed lifetime (years): 	120
 Dimensions (m) 	
Internal diameter	5.8 m
External diameter	6.35 m
 Total length (excavated) 	6300 m
 Length of DRAMIX[®] reinforced section 	6300 m
Segmental lining parameters	
 Number of segments (incl. key): 	7+1
 Size of segments (L x W x T): 	2.6 m x 1.4 m x 0.275 m
 Concrete quality: 	C50/60
 Fiber type: 	DRAMIX [®] 3D 80/60 BGP

• Fiber dosage:

′5 m

BGP & DUOMIX M6 Fire 40 kg/m³ & 1 kg/m³

Circle Line 5 C856, Singapore

Entities involved

• Owner :	Land Transport Authority	
 Designer: 	WSP	
 Contractor(s): 	Sembcorp Engineers Constructors	
Precast plant:	Contech Precast	
Tunnel parameters		
 Year of construction: 	2006	
 Designed lifetime (years): 	120	
 Dimensions (m) 		
 Internal diameter 	5.8 m	
 External diameter 	6.35 m	
 Total length (excavated) 	500 m	
 Length of DRAMIX[®] reinforced section 500 m 		
Segmental lining parameters		
 Number of segments (incl. key): 	5+1	
 Size of segments (L x W x T): 	3.6 m x 1.4 m x 0.275 m	
 Concrete quality: 	C50/60	
 Fiber type: 	DRAMIX [®] 3D 65/60 BG	
 Fiber dosage: 	30 kg/m ³	

Circle Line 1 C825, Singapore

Entities involved

• Owner :	Land Transport Authority
 Designer: 	AECOM
 Contractor(s): 	STECS-Woh Hup-NCC JV
Precast plant:	SPC Precast
Tunnel parameters	
 Year of construction: 	2005
 Designed lifetime (years): 	120
 Dimensions (m) 	
Internal diameter	5.8 m
External diameter	6.35 m
 Total length (excavated) 	500 m
 Length of DRAMIX[®] reinforced section 	500 m
Segmental lining parameters	
 Number of segments (incl. key): 	5+1
 Size of segments (L x W x T): 	3.6 m x 1.4 m x 0.275 m
 Concrete quality: 	C50/60

- Fiber type:
- Fiber dosage:

n DRAMIX® 3D 65/60 BG 30 kg/m³

BEKAERT

Klang Valley MRT SBK Line, Malaysia

Entities involved

• Owner :	MRT Corp
 Designer: 	ARUP
 Contractor(s): 	MMC Gamuda Malaysia
Precast plant:	SPC Precast/EP Precast/MDC Precast
Tunnel parameters	
 Year of construction: 	2016
 Designed lifetime (years): 	120
 Dimensions (m) 	
Internal diameter	5.8 m
External diameter	6.35 m
 Total length (excavated) 	9500 m
 Length of DRAMIX[®] reinforced section 	9500 m
Segmental lining parameters	
 Number of segments (incl. key): 	7+1
 Size of segments (L x W x T): 	2.6 m x 1.4 m x 0.275 m
 Concrete quality: 	C50/60
 Fiber type: 	DRAMIX [®] 3D 80/60 BGP & DUOMIX M6 Fire
 Fiber dosage: 	40 kg/m ³ & 2 kg/m ³

Klang Valley MRT SSP Line, Malaysia

Entities involved

Owner :Designer:Contractor(s):Precast plant:	MRT Corp ARUP MMC Gamuda Malaysia SPC Precast/EP Precast/MDC Precast/KOMT Precast
Tunnel parameters	
 Year of construction: 	2018
 Designed lifetime (years): 	120
 Dimensions (m) 	
Internal diameter	5.8 m
External diameter	6.35 m
 Total length (excavated) 	13500 m
 Length of DRAMIX[®] rein 	forced section 13500 m
Segmental lining parameters	

Segmental lining parameters

- Number of segments (incl. key):
- Size of segments (L x W x T):
- Concrete quality:
- Fiber type:
- Fiber dosage:

7+1 2.6 m x 1.4 m x 0.275 m C50/60 DRAMIX[®] 3D 80/60 BGP & DUOMIX M6 Fire 40 kg/m³ down to 35 kg/m³ & 2 kg/m³ down to 1.5 kg/m³

Sydney Metro Chatswood to Sydenham, Australia

BEKAERT

Entities involved

Transport NSW
Aurecon
John Holland CPB Ghella
Boral
2019-2020
100
6.69 m
15.5 km
15.5 km
99746
3.5 m x 1.7 m x 0.26 m
80MPa
DRAMIX [®] 4D 80/60 BG
36 kg/m ³

Other information

 Drilling through highly abrasive sandstone either side of the harbour. Under the harbour were heterogeneous geologies including sand silt and clay with high water pressures. Depth with35m overburden and 34m depth of water

Forrestfield Airport Link, Perth Western (Australia)

Webuild Design and Construct

Boral

Public Transport Authority of Western Australia

Salini Impreglio (Webuild) &NRW Pty Ltd

BEKAERT

Entities involved

- Designer:
- Contractor(s):
- Precast plant:

Tunnel parameters

- Year of construction:
- Designed lifetime (years):
- Dimensions (m)
 - Internal diameter
- External diameter
- Total length (excavated)
- Length of DRAMIX[®] reinforced section

Segmental lining parameters

- Number of segments (incl. key):
- Size of segments (L x W x T):
- Concrete quality:
- Fiber type:
- Fiber dosage:

Other information

Tunnel drilled through heterogeneous geology.

Borar
2019-2020 120
7 m 7 km 7 km Hybrid
54000 Thickness 0.275 m 80MPa

DRAMIX[®] 4D 80/60 BG

36 kg/m³

Evergreen LRT Line (Vancouver, B.C., Canada)

thickness 0,350 m

DRAMIX® 3D 80/60 BGP

C40

40 kg/m³

Entities involved

•	Owner :	TransLink (British Columbia)
•	Designer:	McMillen Jacobs

SNC - Lavalin

Contractor(s):

Precast plant: APS Precast Structures, Langley, B.C.

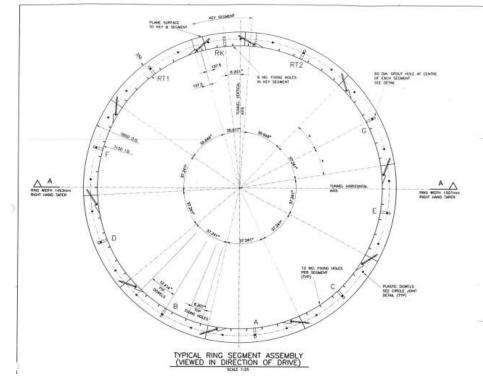
Tunnel parameters

- Year of construction: 2014 Designed lifetime (years): 100 years Dimensions (m) Internal diameter 9.14 m • External diameter 9.84 m Total length (excavated) 2 km Length of DRAMIX[®] reinforced section 2 km Segmental lining parameters Number of segments (incl. key): 7 + 1 (8 total or per ring)
 - Size of segments (L x W x T)
 - Concrete quality:
 - Fiber type:
 - Fiber dosage:

Other information

• Type of ground / ground conditions: Variable soils, sticking and clogging clays, abrasive minerals, boulders, and groundwater.

Channel Tunnel Rail Link (CTRL), London (UK)


Entities involved

Euro Star
Rail Link Engineering Ltd
Nishimatsu/Cementation/Skanska JV
Costain/Skanska/Bachy/Soletanche JV
Kier / Nuttall JV
Malling Holzman JV part of Laing O'Rourke Group
2003/4
120
7.15 m
7.85 m
7.5 km x 2
4.7 km x 2
650 m x 2
All of the above in fibre only
240 only
: 9 + key = 10 in total.
Ext 2.551 m x 1.5 m x 0,350 m
C60
DRAMIX [®] 3D 80/60 BG
30 kg/m ³

Fiber dosage:

Other information

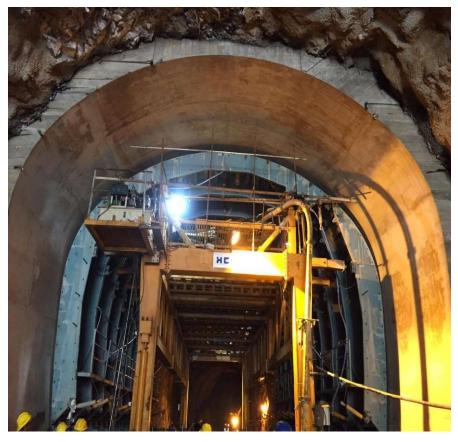
London clay and water bearing sands and gravels.

BEKAERT

Channel Tunnel Rail Link (CTRL), London (UK)

Overall damage rate to segments									
Man	ufacturing proc	cess	Cor	struction proc	ess				
No. of segments made	Rejected	Repaired	Minor damage no repair needed	Minor damage controlled repair	Major repair				
(No.)	(%)	(%)	(%)	(%)	(No.)				
260,000	0.8	2.8	2.2	0.3	1				

Bhanupalli Bilaspur Rail Project (Ongoing)


- BEKAERT
- Client- Indian Railway/ RVNL
- General Consultant- AECOM
- Application : Cast In Place Lining
- Contractor : Max Infra
- Product- Dramix 3D[®]65/60 BG
- Dosages Used- 45 Kg /Cum
- Grade Of Concrete- M 35
- Thickness- 300 mm

USBRL T48- Gammon, (Ongoing)

- Client- Indian Railway /IRCON
- General Consultant- Lombardi India
- Application : Cast In Place Lining
- Contractor : Gammon India
- Product- Dramix 3D[®]65/60 BG
- Dosages Used- 45 Kg /Cum
- Grade Of Concrete- M 35
- Thickness- 300 mm to 400 mm

USBRL T49 A- HCC, (Ongoing)

BEKAERT better together

- Client- Indian Railway /IRCON
- General Consultant- Lombardi India
- Application : Cast In Place Lining
- Contractor : HCC
- Product- Dramix 3D[®]65/60 BG
- Dosages Used- 45 Kg /Cum
- Grade Of Concrete- M 35
- Thickness- 300 Mm

USBRL T1- ABCI, (Ongoing)

- Client- Indian Railway /KRCL
- General Consultant- Geo Consultant
- Application : Cast In Place Lining
- Contractor : ABCI
- Product- Dramix 5D[®]65/60 BG
- Dosages Used- 25 Kg /Cum
- Grade Of Concrete- M 35
- Thickness- 500 mm

DFCC Project- WDFC Phase-II, Package CTP-14

- Client- Indian Railway
- General Consultant- Nippon Koei / SMEC
- Application : PSCL
- Contractor : Sojitz- L&T Consortium
- Product Dramix 4D[®]65/35 BG
- Dosages Used- 25 Kg /Cum & 35 Kg / Cum
- Grade Of Concrete- C32/40
- Thickness- 225 to 430 mm

UGC 06- Sahar Cross- Over- Mumbai Metro

BEKAERT better together

- Client- Mumbai Metro Rail Co Operation
- General Consultant- MAPLE
- Application : PSCL
- Contractor : J Kumar- CRTG (JV)
- Consultant- Bedi Consulting Ltd
- Product- Dramix 4D[®]65/35 BG
- Dosages Used- 30 Kg /Cum
- Grade Of Concrete- C32/40
- Thickness- 300 Mm

Worldwide Pre-Cast Segment Reference

Worldwide Reference Cast-In-Situ Tunnel Lining

BEKAERT

Year	Title	Tunnel type	Country	Thickness (mm)	Fibre type	Fibre name
2020- 2022	Metro Fortaleza-Linea Este	Metro	Brazil	350	Steel Fibres+ PP	Dramix® 3D8060BG + Micro Synthetic
2019-2021	Paris Metro Line 16-1 definitive segments	Metro	France	40	Steel	3D 80/60 BGP
2015-2016	Metro linea 6-Sao Paulo	Metro	Brazil	400	Steel + PP	Dramix*3D8060BG + Micro Synthetic
2012-2014	Metro linea 5 Lote 7-Sao Paulo	Metro	Brazil	400	Steel + PP	Dramix® 3D8060BG+ Micro Synthetic
2012-2013	Metro linea 5 Lote 3-Sao Paulo	Metro	Brazil	400	Steel + PP	Dramix® 3D8060BG + Micro Synthetic
2020	Snowy Hydro 2.0	Utility	Australia	380	Steel	Dramix 3D 80/60 BG
2020	Cross River Rail	Rail	Australia	270	Steel	Dramix 4D 80/60 BG
2020	Second Narrows Tunnel - Vancouver, BC	Hydro	Canada	228.6	Steel	Dramix® 4D 8060BG
2020	Ashbridges Bay Outfall Tunnel - Toronto, ON	Sewage	Canada		Steel	Dramix [®] 4D 8060BG
2020	Coxwell Bypass Tunnel - Toronto, ON	Sewage	Canada		Steel	Dramix® 4D 8060BG
2020	Réseau Express Métropolitain (REM) - Montreal, QC	Metro	Canada		Steel	Dramix® 4D 8060BG
2020	Annacis Island Outfall Tunnel	Hydro	Canada	460	Steel	Dramix 4D 80/60 BG
2020	Paris Metro Line 15 South T2-1/T3-1 sacrificial segments	Metro	France	35	Steel	4D 80/60 BGP
2020	Paris Metro Line 15 South T3c sacrificail segments	Metro	France	35	Steel	4D 80/60 BGP
2020	Safety Tunnel Kerenzerberg	Road	Switzerland		Steel	Dramix® 3D 8060BGP
2020	Hatta Dam Tunnels	Road	UAE	100	Steel	Dramix 3D 65/35
2020	Hatta Dam Tunnels	Hydro	UAE	120	Steel	Dramix 3D 65/35
2020	Ettihad Rail	Rail	UAE		Steel	Dramix 3D 45/35
2020	Interstate 75 Tunnel - Detroit, MI	Sewage	USA		Steel	Dramix® 4D 8060BG
2020	Westerly NEORSD Storage Tunnel	Sewage	USA		Steel	Dramix® 4D 8060BG
2020	Bergen Point Outfall Tunnel	Sewage	USA		Steel	Dramix® 4D 8060BG

Reference Project

With This Technology we have completed more than 150 Projects

<u>Worl</u>	d V	<u>Wor</u>	ld V	<u>Wor</u>	ld V	Wor	ld V	<u>Wor</u>	ld W	<u>Worl</u>	d V	Wor	d Wide	References- Segmental Linir	g With S	teel Fibres	L				bett	ter together
S. No.	Ye	22 23	20 20	43	20:	64 65	19	86	201	110 111	200	132	2019	CBBT Parallel Thimble Shoals Tunnel - Chesapeake, VA	Road	USA	12.8	457.2	Steel	Dramix® 4D 8060BG	Yes	No
1	20			44	20:	00	20.	1205048			200	133	2017	South Hartford CSO - Hartford, CT	Sewage	USA	6.1	305	Steel	Dramix [®] 4D 8060BG	Yes	No
2	20	24	20			66	20:	87	201	112	200	134	2016	Ohio Canal Interceptor CSO - Akron,	Sewage	USA	9.14	355.6	Steel	Dramix [®] 3D 8060BG	Yes	No
				45	200					113	200			ОН								
3	20	25	20	46	19	67	20	88	202			135	2016	Blacklick Creek Sanitary Interceptor Sewer	Sewage	USA	3.05	229	Steel	Dramix® 5D 6560BG	No	Yes
4	20	26	20	40	19			89	202	114	200	136	2015	Dugway Storage Tunnel - Cleveland,	Sewage	USA	7.93	305	Steel	Dramix [®] 3D 6560BG	Yes	No
5	20	27	19	47	19:	68	20:	90	202	115	200			ОН	0							
6	20	28	20	48	20:	69	20:	91	201	116	200	137	2015	First Street CSO - Washington, DC	Sewage	USA	6.1	250	Steel	Dramix [®] 3D 6560BG	Yes	No
				40	20.	69	20.	92	201	117	200	138	2015	LA Water River Supply Conduit - 5&6 - North Hollywood, CA	Hydro	USA	3.05	250	Steel	Dramix® 3D 6560BG	Yes	No
7	20	29	20	49	20:	70	20:	93	201	117	200	130	2013	Central Subway Line - San Francisco,	Metro	USA	5.4	275	Steel	Dramix® 3D 80/60	No	Yes
		30	20	50	20:			94	201	118	200	155	2015	CA	Wetto	USA	5.4	215	Jeer	BG	NO	165
8	20			51	20:	71	20	95	201	119	200	140	2012	Euclid Creek Sewer - Cleveland, OH	Sewage	USA	7.93	305	Steel	Dramix® 3D 80/60	Yes	No
9	20	31	20	52	20:	72	201	96	201											BG		
10	20	22	20	52	20.	73 74	19	97	201	121	199		2009	Bright Water Sewer System, Phase 1	Sewage	USA	5.3	330.2	Steel	Dramix	No	Yes
11	20	32	20	53	199	12 6	20:			122	199	142	2006	Brightwater Sewer Tunnel - Central	Sewage	USA	5.12	177	Steel	Dramix®	Yes	No
12	20	33 34	20	54	20:	75		98	201	123	199	143	2006	Brightwater Sewer Tunnel - East	Sewage	USA	5.87	254	Steel	Dramix®	Yes	No
13	20		20	55	20:	76 77	20	99	201	124	199	144	2006	Brightwater Sewer Tunnel - West	Sewage	USA	4	177	Steel	Dramix®	Yes	No
14	20	35 36	20				20.		204			145	2006	San Vicente Water Tunnel	Hydro	USA	4	177	Steel	Dramix® 3D 8060BG	Yes	No
15	20	30	20	56	20:	78		100	201	125	199	146	2005	Big Walnut Sewer	Sewage	USA	3.65	250	Steel	Dramix® RC80/60BN	No	Yes
16	20	37	20			79	200	101	201	126	199	147	2020	Interstate 75 Tunnel - Detroit, MI	Sewage	USA	4.3		Steel	Dramix® 4D 8060BG	Yes	No
17	20			57	20:	80	200	102	201	127	199	148	2020	Westerly NEORSD Storage Tunnel	Sewage	USA	7.6		Steel		Yes	No
	20	38	20			81	20	103	201			149	2020	Bergen Point Outfall Tunnel	Sewage	USA	3.7		Steel	Dramix [®] 4D 8060BG	Yes	No
18	20 20			58	20(82	20.	104	201	128	199	150	2020	LA Metro Westside Extension -	Metro	USA	6.6	304.8	Steel	Dramix [®] 5D	No	Yes
		39	20	59	20:	83	20	105	201	129	200			Special Segments at Fault Zone						65/60BG		
19	20 20	40	20	60	20:	05	20	106	201	130	201	151	2019	Silicon Valley Clean Water Tunnel	Hydro	USA	4.8	254	Steel	Dramix [®] 4D 80/60BG	Yes	No
20	20	10	20	61	20:	84	20:			150	201	152	2016	River Supply Conduit 5 & 6 - North	Hydro	USA	2.743	203.2	Steel	Dramix 3D 65/60 BG	Voc	No
20	20	41	20	62	20:			107	200	131	201	152	2010	Hollywood, CA	inyuro	054	2.743	203.2	Steel	510111X 35 05/00 BG	105	NO
			20	63	20:	85	20	108	200					na na serie de la construir de								
21	20	42	20 20					109	200													

BEKAERT
 better together

Conclusion....

Available Resources....

- 400+ Projects
 References
- Established Design Codes/Guidelines
- Accepted Testing Methodologies
- Environmentally
 Friendly

Conclusion...

Steel Fiber Reinforced Concrete Is A Global Solution:

- Cost Saving
 - Fabrication Yard for Reinforcement Cage Not Required
 - Reduction In Resources
 - Reduction in Repair Costs
- Durability- Improved
 - Better & Even Distribution Of Fibres- 3-Dimensional Reinforcement
 - Cracking Control
 - Better Performance Against Bursting Forces
- Time Saving
 - Reduction in Time- No Cage Required
 - Faster Production of Segments
- Easy To Use
 - Easy Addition Of Fibres At Batching Plant
 - Reduction in Energy For Compaction
- Green Solution
 - Reduction in CO2 Emissions

Conclusion....

The Principle Of Steel Fibre Concrete Reinforcement In A Nutshell:

- Elimination Of Traditional Reinforcement (Mesh Or Rebar)
 - → Faster & Safer Construction

Homogeneous Distribution

- → Uniform Reinforcement Of Your Concrete Structures
- Redistribution Of Stresses
 - \rightarrow High Ductility & Increased Load Bearing Capacity

Excellent Crack Control

- → A Significant Reduction Of Concrete Cracking And Spalling Of Segments
- Optimal Resistance Against Impact And Dynamic Loads

Right Fibre For The Right Application....

	Dramix® Steel fibers	Synmix® macro synthetic fibers	Duomix® micro synthetic fibers
Plastic shrinkage reinforcement			✓
Anti-spalling aid at fire			✓
Temporary linings (such as in mines) Allowing large deformations	\checkmark	V	
Durability and sustainability (steel)	\checkmark		
Crack controlling reinforcement	~		
Structural reinforcements	~		
Heavy impact	√		
Fatigue	✓		

Material	Steel Mesh / Steel fibre	Micro / Macro Polymer Fibre Extruded polypropylene / polyethylene
Typical length of fibres Typical diameter of fibres	30-60 mm 0.5 - 1.0 mm	micro: 6 - 20 mm macro: 30 - 65 mm micro: 0015 - 0.030 mm macro: 0.5 - 10 mm
Young's Modulus Tensile strength	😀 210000 MPa 😀 500 - 2000 MPa	() 3000 - 10000 MPa () 200 - 600 MPa
Density	🕘 7850 kg/m³	🤓 910 kg/m³
Melting Point (°C)	🥮 1500°C	(e) 165°C does not reinforce
Creep behaviour in tension (Tg glastransition temperature)	🐸 +370°C	🥮 -20°C

Right Fibre For The Right Application....

BEKAERT
 better together

...& All Fibres Are Not Same...

Material	Steel Mesh / Steel fibre	Micro / Macro Polymer Fibre Extruded polypropylene / polyethylene
Typical length of fibres Typical diameter of fibres	30-60 mm 0.5 - 1.0 mm	micro: 6 - 20 mm macro: 30 - 65 mm micro: 0015 - 0.030 mm macro: 0.5 - 10 mm
Young's Modulus Tensile strength	😀 210000 MPa 😀 500 - 2000 MPa	3000 - 10000 MPa 200 - 600 MPa
Density	🕲 7850 kg/m ³	🥴 910 kg/m ³
Melting Point (°C)	🤐 1500°C	165°C does not reinforce
Creep behaviour in tension (Tg glastransition temperature)	些 +370°C	🕘 -20°C

Thank You So Much

Inner Lining

FIRST LINING/TEMPORARY SUPPORT 65/35EG Spray Concrete CE ASTIN AB20 Synmix[®] **FINAL LINING** 65/35EG Spray Concrete Lining CE ASTM AROR PS anti spalling 80/60EG CE ASTM A820 Precast Segments Duomix[®] M6 Fire FINAL LINING 65/60EG 5D ' CE ASTM A820 Cast in place

BEKAERT

Duomix[®] M6 Fire

Thank You So Much For Your Attention

BEKAERT

better together