

Who Are We

Bekaert In A Nutshell*

- □ Founded In 1880 By Leo Leander Bekaert
- Customers In 120 Countries And In The Most Diverse Industry Sectors
- Global Manufacturing Platform
- 28 000 Employees Worldwide
- Combined Sales Of 4.6 Billion Euro
- □ Consolidated Sales Of 3.3 Billion Euro
- □ Listed On Euronext[®] Brussels

Bekaert Is A Worldwide Player Active In Selected Applications

Based On Our Two Core Competences

- □ Advanced Metal Transformation
- Advanced Materials And Coatings

BEKAERT

A human hair = 50 µm

From traditional coatings to advanced coatings

2

History

BEKAERT
 better together

		AC JANK	- Alle		
pioneering	innovating	growing	diversifying	BRIC	ansforming
1880 Leo Leander Bekaert starts a small business in barbed wire in Zwevegem, Belgium	 1952 Steel cord production start 	• Early 1970s New steel cord plant openings and expansions in US, Brazil, Belgium, Japan	Early 1980s Bekaert moves into composite materials, non-ferrous forged products, vacuum coatings and filtration	1993 Bekaert recognizes China's huge market potential and builds a first steel cord plant in Jiangyin, Jiangsu Province	2013 Bekaert lifts its ambition level and deploys global excellence programs across the business
1922	1964	1972	1988	Mid 90s	2014-2016
First investment abroad: Tréfileries de Bourbourg, France	Establishment of R&D center in Deerlijk, Belgium	Listing on the Brussels stock exchange to fund continued growth	New plant openings in the US in response to local demand	Investments and expansions in Brazil, India, Indonesia, China, Peru and Chile	Bekaert concludes its largest acquisition (Pirelli) and merger (Bridon) ever
1948	1965	1975-1977	1990	2000-2010	2020
First investments in Latin America: Argentina and Chile	Start-up of Engineering facility for machine design and manufacture	Establishment of joint ventures in Ecuador and Brazil	Bekaert has become a truly international company with 15000 employees worldwide	Strong growth in China, Central Europe, and start-up production in Russia	Bekaert delivers on all priorities set forth and counters the impact of the pandemic

Environment_Friendly_Solutions_For_ Underground_Works

Steel Fiber Reinforced Concrete Tunnel Linings

better together

BEKAERT

Amit Kaul Business Development Manager Underground

Introduction

• Typically, The Tunnel Supports (Lining's) Are Broadly Divided Into Two Types:

Single Shell Lining (SSL):

- Permanent Sprayed Concrete Lining Consisting Of A Single Layer, Or Several Layers Placed At Different Times:
 - Initial Sprayed Concrete Layer As Sacrificial Layer (5-10 Cm)
 - Primary Sprayed Concrete Layer Immediately Applied
 - Secondary Sprayed Concrete Applied At A Later Stage
 - Architectural Or Protective Finishing Layer (E.G., Case Of Fire)

Double Shell Lining (DSL):

- Traditional Tunnel Lining System Consisting Of:
 - Temporary Sprayed Concrete Primary Lining Immediately Applied After Excavation
 - Waterproofing Membranes Installed & Fixed On The Primary Lining At A Later Stage (Separation Layer)
 - Durable Secondary Cast-in Place Concrete Lining Installed At A Later Stage, Incl. Architectural Or Protective Finishing Layer (E.G., Case Of Fire)

BEKAERT

Lining Considerations Aspects

BEKAERT

- Long Term Durability
- Strength Development
- Predicted Loadings And Load Bearing/ Load Transfer
- Longevity & Finish
- Repair & Maintenance

Choice of Lining Type Must Consider:

- Constructability.....
- Time Frame....
- Required Quality Of Finishing
- Water Proofing System

Current Practices & Possible Challenges

Cycle Times:

- Installation of Reinforcement
- Concrete Casting (Large Gantries)

Space Constraints:

- Steel Storage Yards
- Reinforcement Fabrication Yard

Concrete Placement:

- **Dense** Reinforcement
- Maintaining Proper Cover
- Compaction Methods (Shutter Vibrators, etc.?)

Post Construction Repairs & Maintenance:

- Construction Joints & Honeycombing (Difficulty in Compacting)
- Small Surface Cracks

8

BEKAERT

Current Practices & Possible Challenges

Current Systems With Re-bars Have Following Challenges:

- Need Large Space For Storing Reinforcement and Fabrications
- COVER->40 MM Most Susceptible
- Depending Upon Design Requirements Sections Can Have Congested Reinforcement Cages
- Handling Reinforcement Cages Need Additional Resources (Manpower, Machines, etc.)
- High Degree of Compaction Needed To Achieve Maximum Density & Especially In Thickly Reinforced Sections (Honeycombing, etc.)

Consequences:

- Large Area Fabrication Yards Needed
- Additional Contractors For Bar Bending & Reinforcement Cage Manufacturing
- Additional Resources for Reinforcement Installation in Gantries
- Increased Cycle Times

9

How To Mitigate The Issues....

By Replacing Steel Re-bars With Dramix® Steel Fibre In Lining

Wt. of Rebar's varies 70- 150 Kg /Cum *Depending on the Diameter of the Tunnel

Dosage Rates: 5D 65/60BG 25 – 40 Kg/M³

BEKAERT

10

How Is This Possible.....

Understanding Concrete Behavior...

The Principle Of Concrete Reinforcement

- Concrete Is Naturally BRITTLE And Has Low Tensile Strength And Ductility. When Subjected To Tensile Stresses, Unreinforced Concrete Will Crack And Fail.
- In Order To Change This Brittle Behaviour Into A More Ductile Behaviour, Mesh, Rebar Or Steel Fibres Are Added. The Role Of The REINFORCEMENT Is To Increase Load Bearing Capacity And Limit Crack Opening.

How Is This Possible.....

Understanding Concrete Behavior...

Nothing Is Less True! Discover Why Steel Fibres Are The Perfect Alternative To Mesh Or Rebar Reinforcement In Many Applications.

BEKAERT better together

Types of Fibres....

- Different Types Of Steel Fibres
- Steel Fibres For Concrete Appear In All Colors, Shapes, Sizes And Materials.
- The Performance Of Steel Fibres Is Influenced By Different Factors:
 - Wire Strength
 - Shape
 - Wire Elongation
 - Amount Concrete
 - Strength

Introduction to Fibre Reinforced Concrete

- Steel Fibres Are Discrete, Discontinuous
 Pieces Of Reinforcement
- Steel Fibres Add Ductility To An Otherwise Brittle Concrete

BEKAERT

Why SFRC?

Constructive

- Avoid Conventional Reinforcement (Mesh, Rebars)
- Labor Reduction
- Reduction Of Checking Time
- Reinforcement Correctly Placed

Structural

- Smaller Crack Width Openings
- Higher Durability
- Higher Impact And Abrasion Resistance
- Higher Fatigue Strength

Cracking Control

- The Fibers Sew The Cracks And Redistribute The Tensile Stresses In A Larger Concrete Area.
- Reduce The Crack Width And Spread The Cracking Due To Loads Or Constraints.
- Prevent Rebar Corrosion, Stop Water Paths, Better Aesthetic Presentation, Prevent Spalling Due To Load Or Impacts.
- Increase Of Durability.

Results In A Shear Test Of A Full Scale Beam

Why SFRC?

... and for passive fire protection

Fire Damage In Gotthard Tunnel, 2001

Why SFRC?

Plain Concrete	
340 Mm Spalling Depth (RABT Fire Curve)	

2 KG PP Fibre RC 15 Mm **BEKAERT**

19

Advantages of Fibre Reinforced Concretes

BEKAERT better together

 Five Advantages Of Steel Fibre Concrete Reinforcement

Reinforcing Capacity And Efficient Crack Control

Reinforcing Capacity And Efficient Crack Control

BEKAERT
 better together

*CMOD: Crack Mouth Opening Displacement

Reinforcing Capacity And Efficient Crack Control

Shear Resistance of SFRC

 Steel Fibres Can Contribute To The Shear Capacity Of Any Structure By Bridging Of Shear Cracks.

BEKAERT

Homogeneous Reinforcement

Homogeneous Reinforcement

BEKAERT

Homogeneous Reinforcement

Bekaert Invented Glued Fibres In Order To Avoid The Potential For Balling Related To Adding Loose Fibres With A High L/D Radio (And Thus Better Performing) To A Concrete Mix.

Steel Mesh Reinforcement

- Transport The Mesh/Rebar
- Handle And Stock The Mesh/Rebar On Site
- Place The Mesh/Rebar
- Pour The Concrete

Steel Fibre Reinforcement

 Add The Steel Fibres To The Concrete (At The Ready-mix Plant Or Job Site)

BEKAERT

Pour The Concrete

Safer Jobsite Conditions

 Using Steel Fibres Enhances The Safety On Your Construction Site. Reinforcement Mesh And Rebar Not Only Hampers Other Work On Your Site, but They Are also, Very Often The Cause Of Accidents And Severe Delays.

 Steel fibres represent a concrete reinforcement system that is quick and easy to install with:

€ Cost Effective

Cost Economics- Case Reference							
STEEL FIBRE REINFORCED CONCRETE SEGMENTS							
			- Or				
	Unit cost	• •	120.				
	Unit Price Per	DS 11					
Fibres	10	= K3					
	acrete						
Repair of damaged segments	of Cono-		ments for repair				
% of segments requiring	01 -	201					
r Cu. III		Cost/Hour					
Laha Per -		18.75	0.94				
C caving .	0.25	1200.00	15.00				
Adr. Sat	0.25	31.25	0.39				
16%	Cost/Segment	Total cost					
C materials	25.00	7030	1.25				
Tot cost/Cum Rs			5617.58				

Cost Economics- Green Solutions...

Dramix® Minimizes The Impact On The Environment -Using Less Steel

Cost Economics- Green Solutions...

Dramix® Minimizes The Impact On The Environment -Using Less Steel

Bekaert Support

Bekaert Support

Bending Moments M, Axial Forces N, Shear Forces V

x	Y	×	v	N	т	м	54.00 F6.00 F8.00 70.00 72.00 76.00 76.00 76.00 80.00 82.00
[m]	[m]	[m]	(m)	[k N /m]	[kN/m]	[k N m /m]	
66,39	37,95	-5,93	-0,53	-808,67	48,17	-139,22	
66.81	36.24	-5,79	-1,40	-736,22	83.69	- 9 2 , 6 0	[Pron/m]
66.86	36 1 2	-5 4 7	-2,24	-650.90	7538	-24 34	46.00
66,96	35,90	-5,37	-2,58	-600,43	63,65	-7,20	
68,87	43,28	-3,46	4,80	-754,41	-42,23	39,55	
68,60	43,08	-3,73	4,60	-774,64	-45,04	24,73	44.00
68,34	42,86	-3,99	4,38	-795,75	-47,50	9,01	
68,21	42,74	-4,11	4,26	-806,44	-48,57	0,85	
67,97	42,50	-4,35	4,02	-827,82	-50,38	-15,96	
67,86	42,38	-4,47	3,90	-838,35	-51,11	-24,57	47.00-
67,64	42,12	-4,69	3,64	-858,82	-52,19	-42,12	
6734	41,04	-4,09	3,30	-886 59	-52,71	-68.89	
6716	4141	-5,16	2 9 3	-90220	-52 24	-86 73	40 20 -
67,08	41,27	-5,24	2,79	-908,89	-51,70	-95,56	
66,93	40,96	-5,40	2,48	-919,67	-50,00	-112,86	
66,79	40,65	-5,53	2,17	-926,36	-47,22	-129,39	
66,73	40,49	-5,59	2,01	-927,94	-45,29	-137,24	
66,62	40,17	-5,70	1,69	-927,32	-39,92	-151,77	
66,58	40,01	-5,75	1,53	-925,02	-36,14	-158,26	
66,50	39,67	-5,83	1,19	-915,76	-24,48	-168,97	36.00
66,44	39,33	-5,89	0,85	-900,25	-6,48	-1/4,4/	
6637	3830	-5,93	-0.18	-834 42	40.57	-15476	0.000
75.78	43.28	3.46	4.80	-979.14	63.15	-45.05	- 00 KC
75,48	43,48	3,15	5,00	-943,73	61,49	-22,02	
75,16	43,67	2,83	5,19	-907,96	58,10	0,07	
74,99	43,75	2,67	5,27	-890,29	55,90	10,59	66.00 67.00 68.00 69.00 70.00 71.00 72.00 73.00 74.00 75.00 76.00 77.00 78.00 78.00
74,66	43,91	2,33	5,43	- 8 5 5 , 7 3	50,69	30,26	
74,49	43,98	2,16	5,50	-839,05	47,78	39,34	
74,14	44,10	1,81	5,62	-807,19	41,74	55,85	6 <u>11</u>
73,79	44,20	1,46	5,72	-777,87	35,50	70,09	T Drojm)
7 3 , 6 1	44,24	1,20	5,76	-704,30	32,30	70,34	
73.06	44,31	0,52	5 8 5	-72873	20,07	91.63	
72.69	44.37	0.37	5.89	-709.47	16.78	98.96	
72,33	44,38	0,00	5,90	-694,12	10,69	104,01	
72,14	44,38	-0,18	5,90	-688,00	7,64	105,70	
71,77	44,35	-0,55	5,87	-678,83	1,62	107,40	
71,59	44,33	-0,74	5,85	-675,80	-1,36	107,43	
71,23	44,28	-1,10	5,80	-672,88	-7,14	105,86	
70,87	44,20	-1,46	5,72	-674,08	-12,80	102,18	41 <u>00</u>
	v				-		
(m)	r (m.)	(m)	y (m.)	[kN/m]	[k N / m]	ík Nm/ml	
[]	[]	[]	[]	[KR/m]	[]	[816 10 7 10]	
70,69	44,15	-1,64	5,67	-676,17	-15,60	99,55	
70,34	44,04	-1,99	5,56	-683,23	-21,03	92,80	300-
70,16	43,98	-2,16	5,50	-688,12	-23,66	88,68	
69,82	43,83	-2,50	5,35	-700,50	-28,70	79,03	33.00
69,49	4 3 ,6 7	-2,83	5,19	-715,99	-33,48	67,55	
69,33	43,58	-2,99	5,10	-724,75	-35,80	61,16	
69,02	43,38	-3,31	4,91	- / 4 4 ,0 2	-40,18	47,15	200 ⁻
78,26	37,95	5,93	-0,53	-086,84	-41,91	-153,18	
7823	39.24	5,95	0,12		-29,28	-190.46	
78.20	39.40	5.88	0.92	-1013.15	-10.85	-192.46	
78,14	39,72	5,82	1,24	-1042,84	-4,34	-194,93	

Bekaert Support

Verification Of Safety (ULS)

References

Bhanupalli Bilaspur Rail Project (Ongoing)

BEKAERT

- Client- Indian Railway/ RVNL
- General Consultant- AECOM
- Application : Cast In Place Lining
- Contractor : Max Infra
- Product- Dramix 3D[®]65/60 BG
- Dosages Used- 45 Kg /Cum
- Grade Of Concrete- M 35
- Thickness- 300 mm

USBRL T48- Gammon, (Ongoing)

- BEKAERT
- Client- Indian Railway /IRCON
- General Consultant- Lombardi India
- Application : Cast In Place Lining
- Contractor : Gammon India
- Product- Dramix 3D[®]65/60 BG
- Dosages Used- 45 Kg /Cum
- Grade Of Concrete- M 35
- Thickness- 300 mm to 400 mm

USBRL T49 A- HCC, (Ongoing)

BEKAERT better together

- Client- Indian Railway /IRCON
- General Consultant- Lombardi India
- Application : Cast In Place Lining
- Contractor : HCC
- Product- Dramix 3D[®]65/60 BG
- Dosages Used- 45 Kg /Cum
- Grade Of Concrete- M 35
- Thickness- 300 Mm

USBRL T1- ABCI, (Ongoing)

BEKAERT

- Client- Indian Railway /KRCL
- General Consultant- Geo Consultant
- Application : Cast In Place Lining
- Contractor : ABCI
- Product- Dramix 5D[®]65/60 BG
- Dosages Used- 25 Kg /Cum
- Grade Of Concrete- M 35
- Thickness- 500 mm

DFCC Project- WDFC Phase-II, Package CTP-14

- Client- Indian Railway
- General Consultant- Nippon Koei / SMEC
- Application : PSCL
- Contractor : Sojitz- L&T Consortium
- Product Dramix 4D[®]65/35 BG
- Dosages Used- 25 Kg /Cum & 35 Kg / Cum
- Grade Of Concrete- C32/40
- Thickness- 225 to 430 mm

BEKAERT better together

UGC 06- Sahar Cross- Over- Mumbai Metro

- Client- Mumbai Metro Rail Co Operation
- General Consultant- MAPLE
- Application : PSCL
- Contractor : J Kumar- CRTG (JV)
- Consultant- Bedi Consulting Ltd
- Product- Dramix 4D[®]65/35 BG
- Dosages Used- 30 Kg /Cum
- Grade Of Concrete- C32/40
- Thickness- 300 Mm

- **Date:** 2014-2015
- Project Name: Riva Tuneli– 3rd Bridge Tunnel
- Tunnel Type: Highway
- Client: Istanbul Municipality
- Country: Turkey
- Contractor: IC Ictas Astaldi Consortium
- Fiber Type: 5D 65/60BG
- Dosage Rate: 20 Kg/Mc
- Concrete Class: C30/37
- Max Diameter: 22 Meters

- Lee Tunnel London UK (2015)
- Final Lining FRC
 - Tunnel (Ø: 8.8 M)
 - Designed With MC 2010 By UnPS Traditional Reinforcement Removed, About 15000 Tons
 - Just 2100 Tons Of Dramix® 5D 6560BG @ 40kg/M (67pcy), 60mm Long & 0.90mm Diameter.
 - This Dosing Rate Provided Excellent Bending Hardening Properties To The Concrete Section.
- 3D 65/35 BG For The Shaft Lining

- Jansen Mine Shafts Saskatchewan, Canada
- Shaft Basics– Construction:
 - Shaft Walls Range From 800mm
 Thick Up To 1.1m Thick
 - Interior Diameter Of 8.5 M
 - Shaft Walls Are Slip Formed With A Scheduled
 - Production Of Up To 3m Per Day.
- Concrete Strength 60mpa
- Dosage Rate 40kg / M³

49

.

Project list - Cast in Place / Final Lining

Year	Project	Tunnel Type	Country	ØExt (m)	Thickness (mm)	Fiber type	Concrete Class (Cxx/yy)	SFRC only	Combined solution	Client/contractor
2021	T-1 USRL	Rail	India	6	350	Dramix5D65/60 BG	M 35			Indian Railway
2020	Yusufeli Road Deplacement	Road	Turkey	11,5	400	5D 65/60BG	C30/37			Limak Construction
2020	Sydney Metro Civil Works	Metro	Australia			4D80/60BG	C40/50			Holcim
2020	Thames Tideway West Hammersmith Connector Tunnel	Sewage	UK	4	300	5D6560BG	C50/60			Client Thames Water - Contractor BMB JV
2020	Thames Tideway West Hammersmith Connector Shaft	Sewage		27	600	5D6560BG				Client Thames Water Contractor BMB JV
2020	Tunnel Diel	Rail	Slovakia	10	600	DRAMIX® 5D 65/60BG	C30/37			Tubau
2020	T 49 of USRL	Rail	India	6	200	Dramix3D65/60	C28/35			India Railway
2019/20	Hammersmith Connect Tunnel Shaft London	Sewage				5D6560BG	C50/60			Thames Tideway West / Thames Water
2019	Hammersmith Connector Tunnel London UK	Sewage	UK	4,5	35	5D6560BG	C50/60			Thames Tideway West / Thames Water
2019	Northern Marmara Highway Extension	Road	Turkey	24	600	4D 65/60BG	C30/37			Cengiz-Limak-Kolin-Kalyon JV
2019	Ayvacık Road	Road	Turkey	11,5	400	5D 65/60BG	C30/37			Kalyon AS
2017	Honaz Road	Road	Turkey	11,5	400	5D 65/60BG	C30/37			Özce Construction
2016	Jansen Mine Production & Service Shafts - Initial & Final Linings	Mining	Canada			Dramix® 5D 6560BG				Ledcor, Redpath, Thyssen
2016	Hanlan	Hydro	Canada			Dramix® 3D 6535BG				
2016	Astra Zennica	Utility	Great Britian		175	3D6560G	C50/60			Joseph Gallagher Ltd
2015	Riva Tunnel, Northern Marmara Highway	Road	Turkey	22	600	Dramix® 5D 6560BG	C30/37			IC İçtaş-Astaldi JV
2015	Konak Tunnels/Izmir	Road	Turkey	11,5	400	Dramix® 5D 6560BG	C30/37			Ege Asfalt
2014	Lee Tunnel - Thames Tideway Project - 5 no Shaft Lining	Sewage	United Kingdom			Dramix® 3D 6535BG	C50/60			Thames Water
2014	Lee Tunnel - Thames Tideway Project - Final Lining	Sewage	United Kingdom			Dramix® 5D 6560BG	C50/60			Client - Thames Water
2013	Göktas HES/Adana	Hydro	Turkey	9	500	Dramix® 3D 8060BG	C25/30			Bereket Enerji
2008	Arpa HES/Artvin	Hydro	Turkey	4,5	300	Dramix® 3D 6560BG	C25/30			B&M Engineering
2006	Craviale/Turina	Road	Italy			Dramix® 3D 6560BG			1	
2001	Kakegawa No. 1 - Twin Tunnel	Road	Japan	15	500	Dramix® RC-65/60-BN	C30/37		1	Maeda
1996	The Brunel Tunnel	Metro	Great Britian		200		C40/50			London Underground Ltd
1995	Tarvisio tunnel (UD)	Rail	Italy							FF.SS.
1994	Highway Torino – Bardonecchia – Bussoleno (TO)	Road	Italy							ANAS-SITAF
1994	Piano del Campo Hidraulic tank (Palermo)	Hydro	Italy							Cons. Bonifica Belice
1994	Rosamarina DAM (PaLERMO – t. Imerese)	Hydro	Italy							Reg. Sicilia
1993	Electric power station	Hydro	Italy							Enel (Torino)
1992	Fresh water tunnel Blufi	Hydro	Italy							Ente sviluppo e
	Thames Tideway West Hammersmith Connector Shaft Works	Sewage								

www.bekaert.com

infobuilding@bekaert.com

Modifications reserved

All details describe our products in general form only. For ordering and design only use official specifications and documents. Unless otherwise indicated, all trademarks mentioned in this document are registered trademarks of NV Bekaert SA or its subsidiaries. @ Bekaert 2021

Available Resources....

- 400+ Projects
 References
- Established Design Codes/Guidelines
- Accepted Testing Methodologies
- Environmentally
 Friendly

Conclusion....

Conclusion....

The Principle Of Steel Fibre Concrete Reinforcement In A Nutshell:

- Elimination Of Traditional Reinforcement (Mesh Or Rebar)
 - → Faster & Safer Construction

Homogeneous Distribution

→ Uniform Reinforcement Of Your Concrete Structures

Redistribution Of Stresses

→ High Ductility & Increased Load Bearing Capacity

Excellent Crack Control

→ A Significant Reduction Of Concrete Cracking And Spalling Of Segments

Optimal Resistance Against Impact And Dynamic Loads

53

Right Fibre For The Right Application....

BEKAERT
 better together

...& All Fibres Are Not Same...

Material	Steel Mesh / Steel fibre	Micro / Macro Polymer Fibre Extruded polypropylene / polyethylene		
Typical length of fibres Typical diameter of fibres	30-60 mm 0.5 - 1.0 mm	micro: 6 - 20 mm macro: 30 - 65 mm micro: 0015 - 0.030 mm macro: 0.5 - 10 mm		
Young's Modulus Tensile strength	😀 210000 MPa 😅 500 - 2000 MPa	3000 - 10000 MPa 200 - 600 MPa		
Density	🕲 7850 kg/m ³	🥴 910 kg/m³		
Melting Point (°C)	🥮 1500°C	165°C does not reinforce		
Creep behaviour in tension (Tg glastransition temperature)	🥮 +370°C	😀 -20°C		

And It's Green....

Comparison Of Embodied CO2 For Different Types Of Binder And Steel Reinforcement Used For Various Major Infrastructure Projects (Edvardsen et al)

55

Thank You So Much

Inner Lining

FIRST LINING/TEMPORARY SUPPORT 65/35EG Spray Concrete CE ASTIN AB20 Synmix[®] **FINAL LINING** 65/35EG Spray Concrete Lining CE ASTM AROR PS anti spalling 80/60EG CE ASTM A820 Precast Segments Duomix[®] M6 Fire FINAL LINING 65/60EG 5D ' CE ASTM A820 Cast in place

BEKAERT

Duomix[®] M6 Fire

