

SUSTAINABILITY IN UNDERGROUND PLANNING, DESIGN, CONSTRUCTION, AND OPERATION OF TUNNELS AND UNDERGROUND PROJECTS

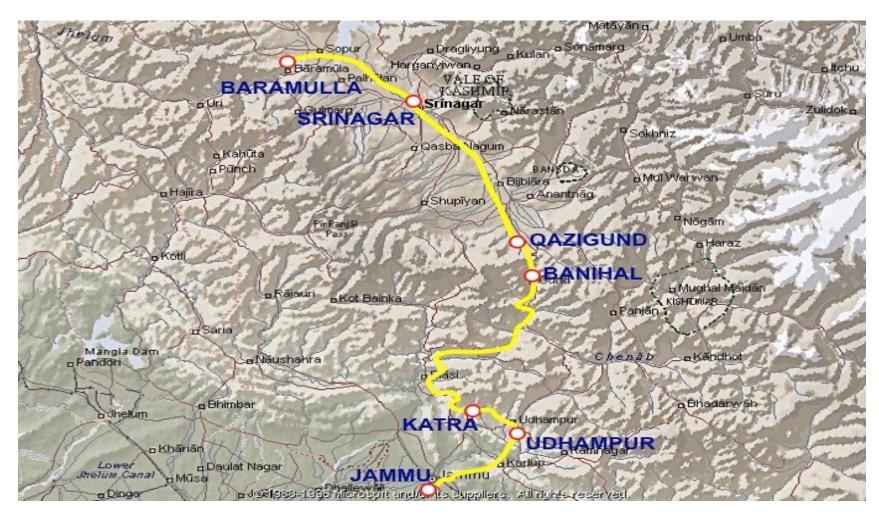
(I)-TM's Output in T01 of USBRLP

An Efficient and Safe Hybrid Tunnelling Method

Dr Bineshian, Hoss

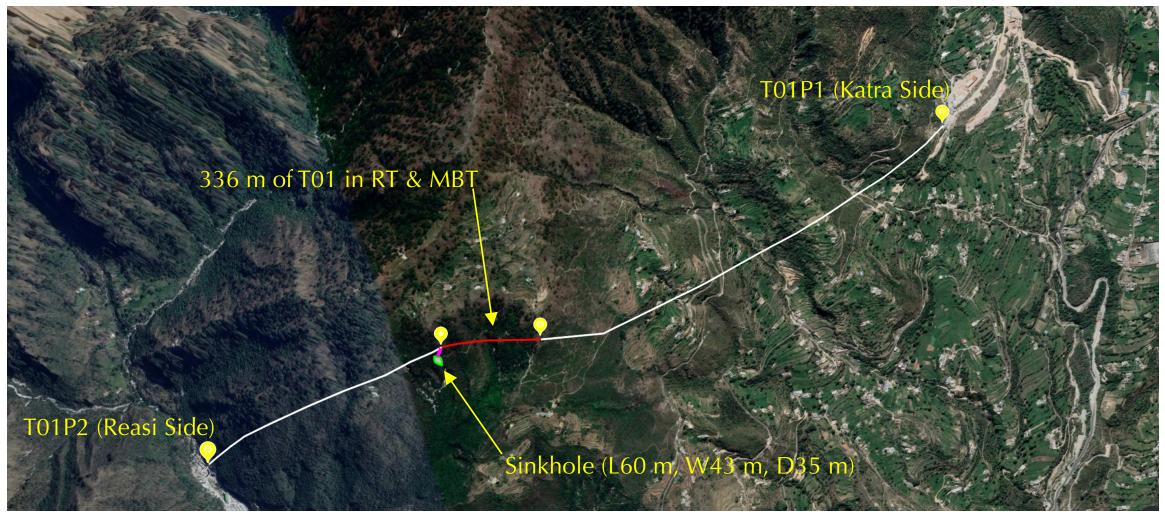
Technical Director, Amberg Engineering AG DrBineshian@outlook.com

Table of Contents


- USBRLP
- T01
- Salient Features
- Alignment in RT within MBT
- Geological L-Profile
- Chronology of Failures
- Overview of Physical Progress in MBT
- Advancement Flowchart
- Execution Details
- Design Flowchart
- I-System
 - Application
 - Features
 - Scoring Diagram
 - Summary
 - Utilisation Diagram
 - I-System Software

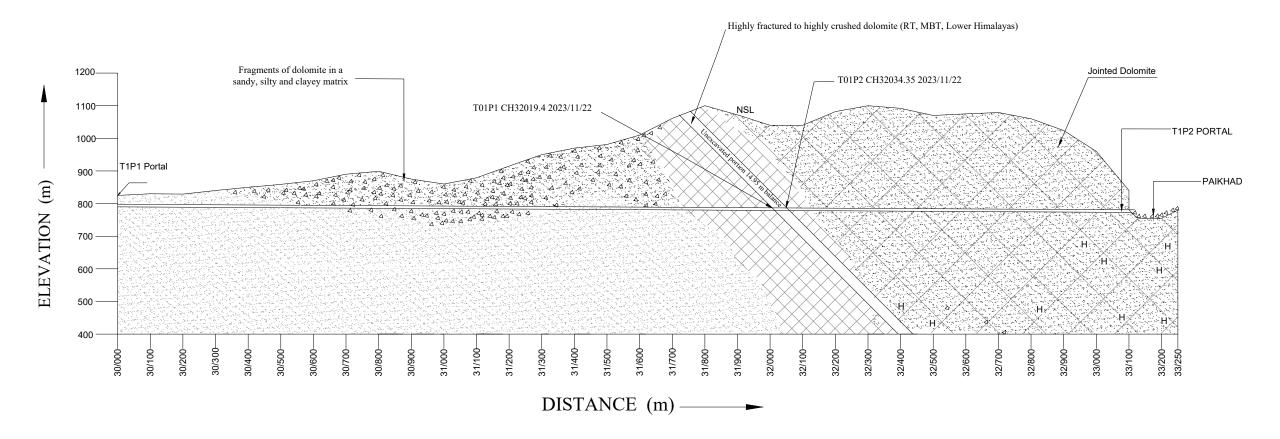
- (I)-TM
 - Application
 - Principles and Concept
 - Utilisation Diagram
 - (I)-TM vs Other Existing TMs
- GCD
- Disclaimer
- References

<u>USBRLP</u>


T01: Salient Features

Total Length	3209 m
(I)-TM (Bineshian, 2022)	336 m; successfully employed in problematic portion due to failure of Conventional and NATM
Conventional Tunnelling Method	1082 m; unsuccessful in problematic portion
NATM	1791 m; unsuccessful in problematic portion
Wetness	Moist, Leak, Wet, Drip, Shower, Flow, Gush, Burst
Lithology	Alluvium, Claystone, Colluvium, Dolomite, Limestone, Mudstone, Sandstone, Scree, Shale, Siltstone
Identified Mechanical Behaviour of Ground	Fully Plastic, Gravity Driven, Liquefaction, Squeezing, Visco- elasto Plastic
Geo-structure	Highly Jointed, Highly Sheared, Highly Tectonised

T01: Alignment in RT within MBT



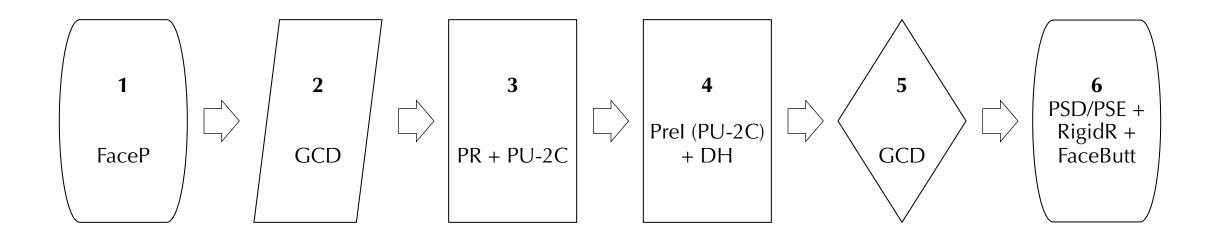
Tunnelling Asia 2023

International Conference on Underground Space

T01: Geological L-Profile

T01: Chronology of Failures

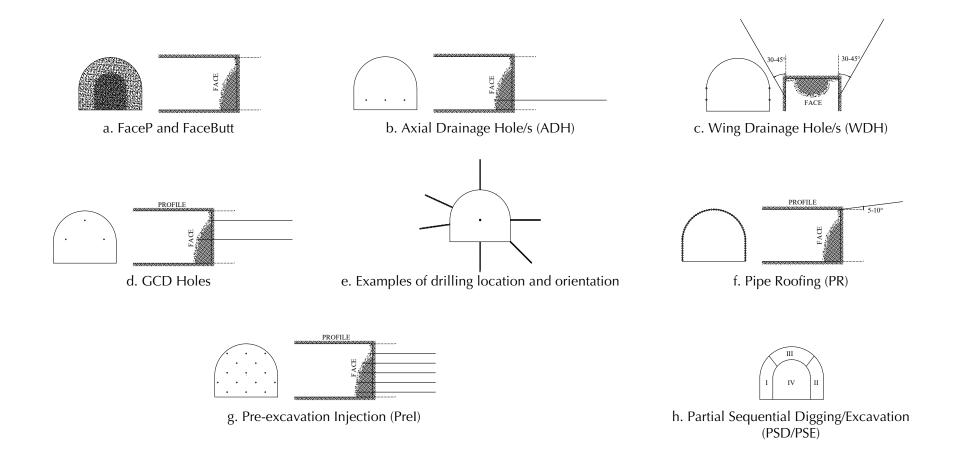
Failure Code	Date of Failure	Discharge (m ³)	Failure Location	Chainage
01	2016/08/28	5,000	T01P2	CH32140
02	2016/09/29	10,000	T01P2	CH32145
03	2017/02/23	150	T01P2	CH32145
04	2017/03/12	100	T01P1	CH31804
05	2017/03/18	250	T01P1	CH31804
06	2017/03/24	150	T01P1	CH31804
07	2017/03/29	250	T01P1	CH31804
08	2017/05/05	6,000	T01P2	CH32137
09	2017/09/21	100	T01P1	CH31818
10	2017/09/26	150	T01P1	CH31820
11	2017/10/03	350	T01P1	CH31820
12	2017/10/14	20,000	T01P2	CH32140
13	2017/11/02	350	T01P1	CH31820
14	2017/11/22	3,000	T01P2	CH32145
15	2018/01/25	300	T01P1	CH31820
16	2021/11/17	300	T01P2	CH32140

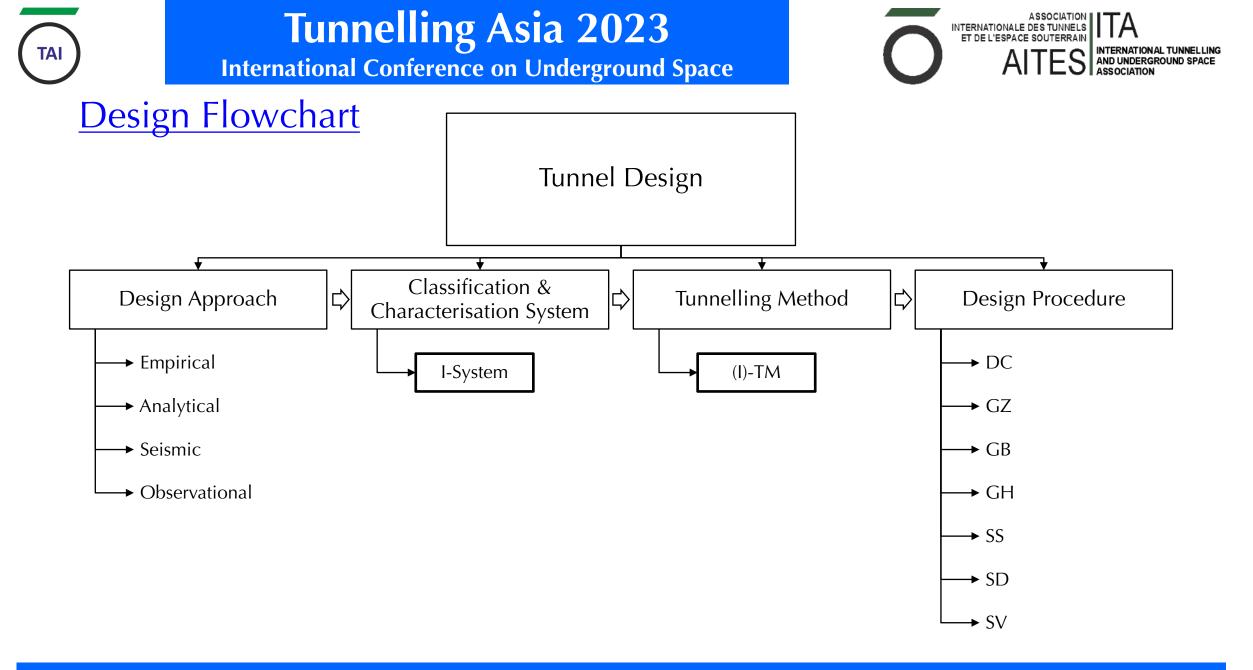

T01: Overview of Physical Progress in MBT

TM Employed	Classification Employed	Progress (mm/day)	From	То	Duration (days)	Total Advance (m)
NATM	Q	Nil	2016/08/28	2019/08/31	1098	Nil
NATM	RMR	2.03	2019/05/23	2022/01/31	984	2
(I)-TM	I-System	512.28	2022/05/01	2023/11/22	570	292

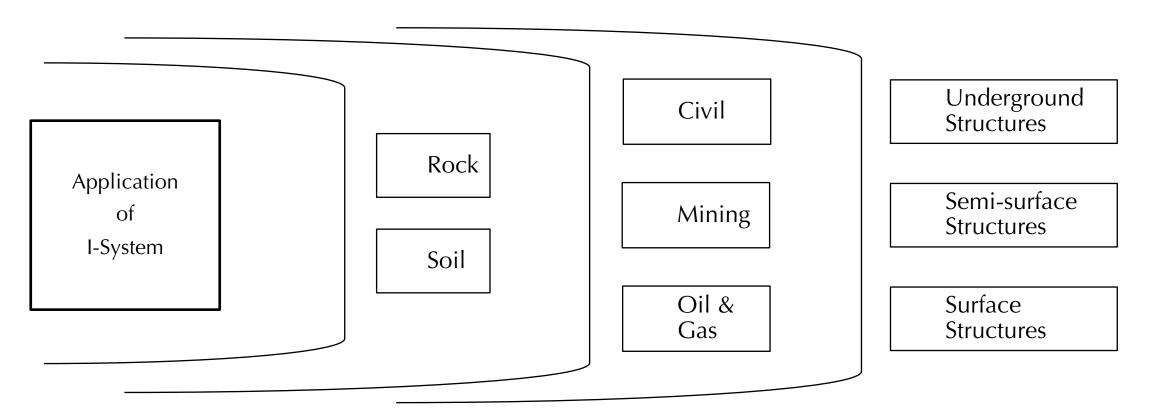
ASSOCIATION INTERNATIONALE DES TUNNELS ET DE L'ESPACE SOUTERRAIN AITES AITES INTERNATIONAL TUNNELLING AND UNDERGROUND SPACE ASSOCIATION

T01: Advancement Flowchart



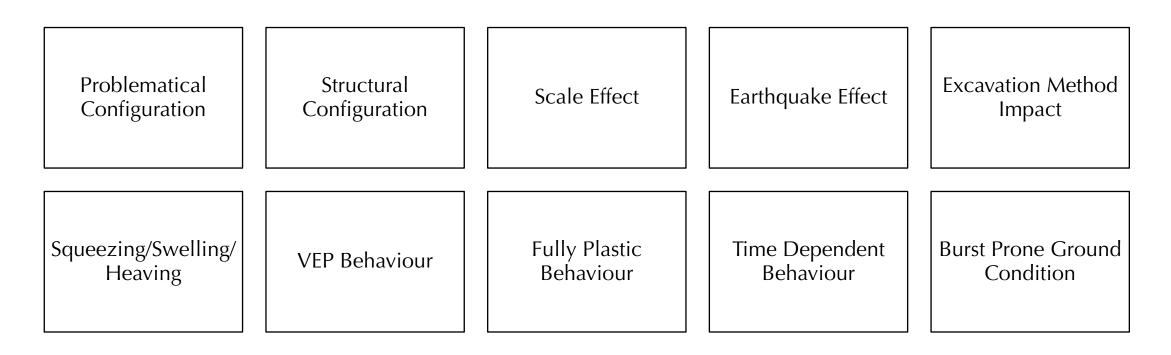


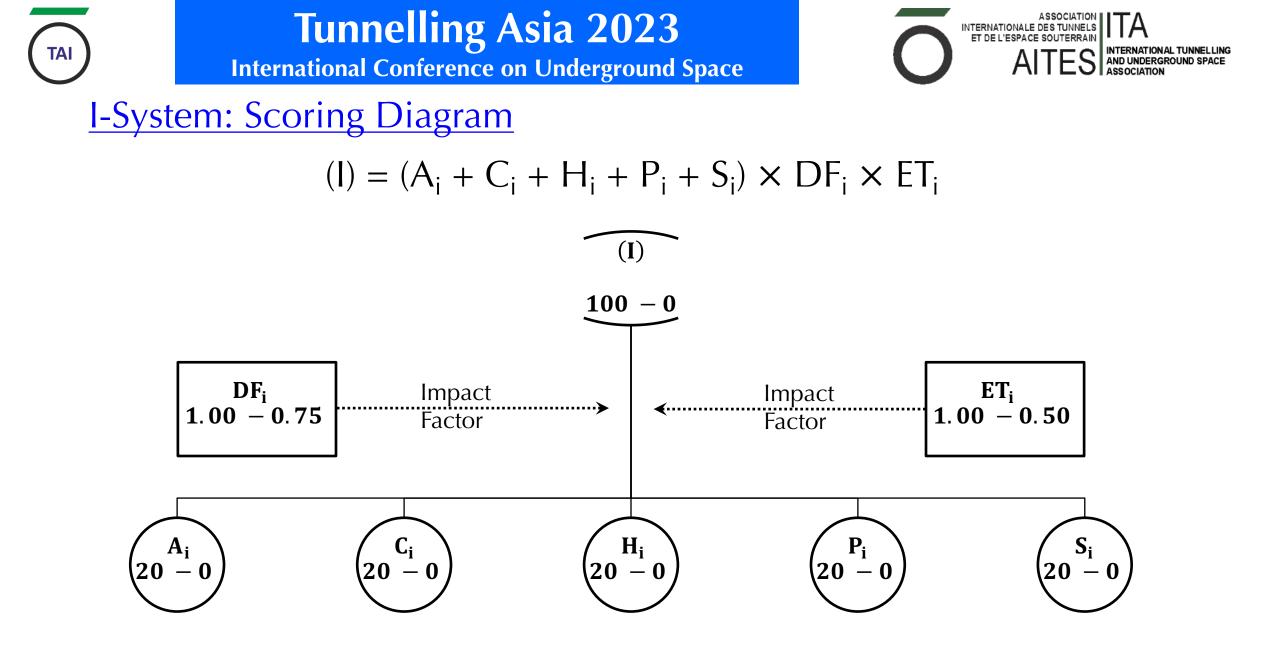
T01: Execution Details



I-System: Application

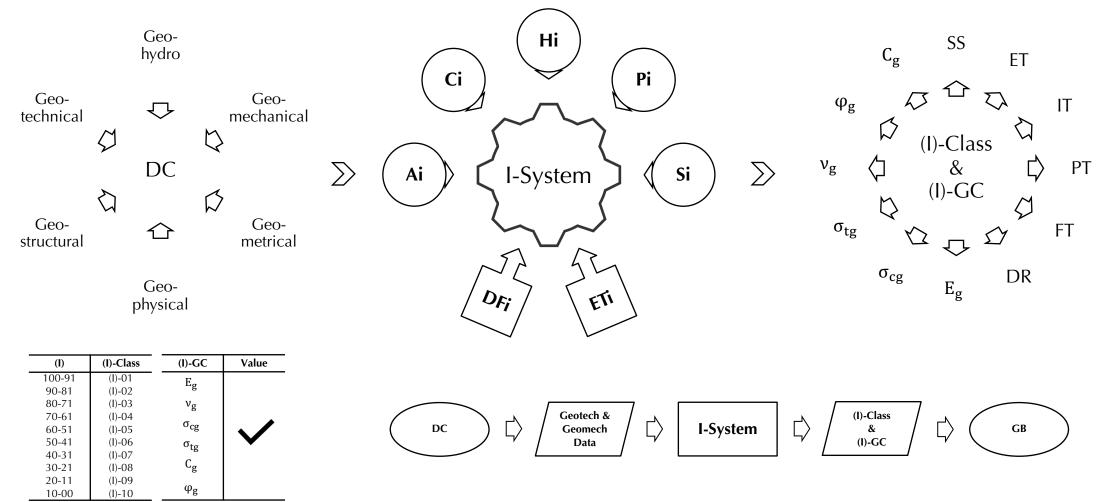
Accurate in Prediction of GB After 24 Years Scrutinization in Practice

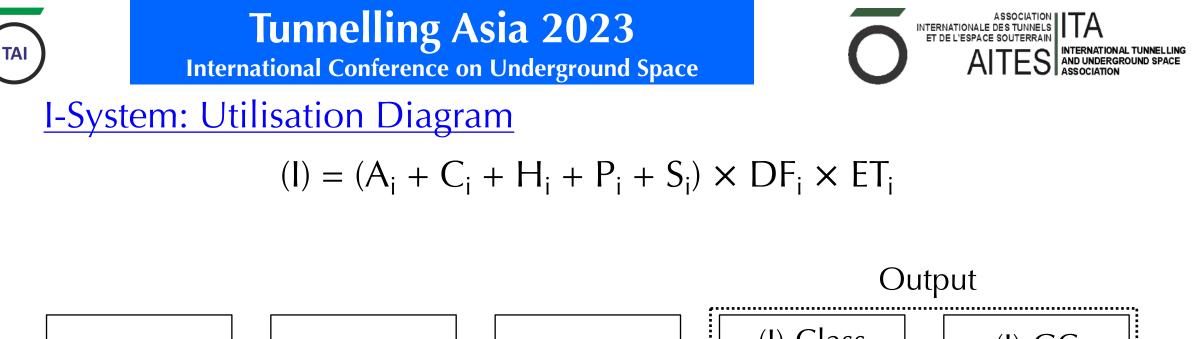


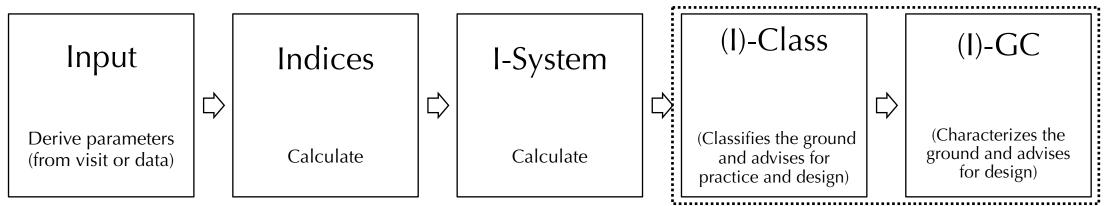


I-System: Features

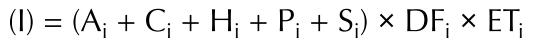
First Ever Classification That Considers

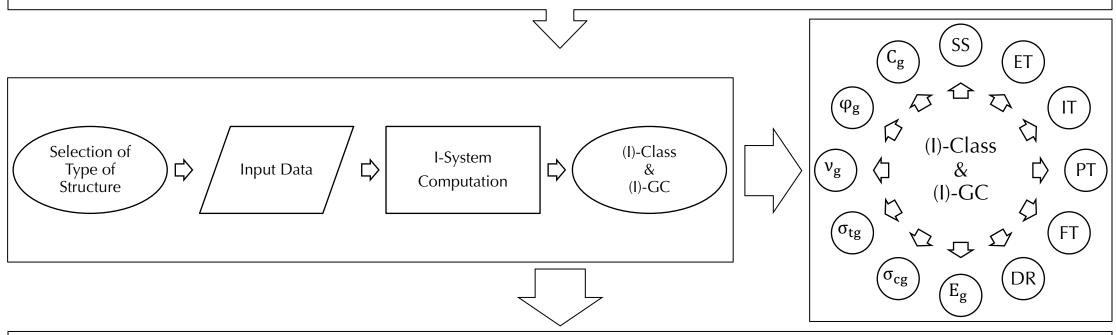



Tunnelling Asia 2023


International Conference on Underground Space

I-System: Summary

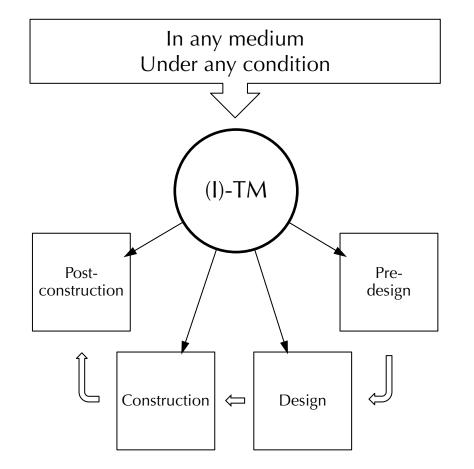




I-System Software

- (I)-Class: I-System's Ground Classification (Bineshian, 2021)
- (I)-GC: I-System's Ground Characterisation (Bineshian, 2021)
- (I)-TM: I-System's Tunnelling Method (Bineshian, 2021)
- GCD Calculator: Ground Conductivity Designation (Bineshian, 2020)
- PL Advisor: Pull Length Advisor (Bineshian, 2021)

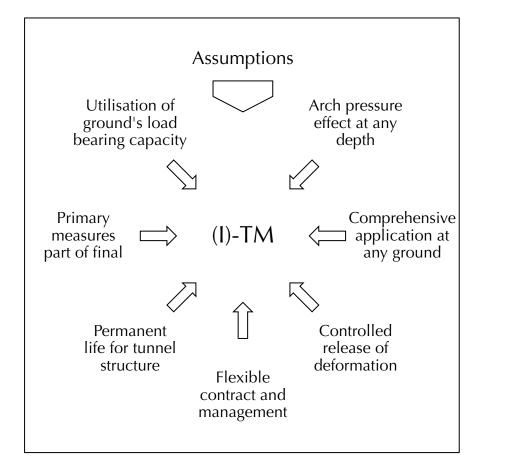
- PPV Predictor: Peak Particle Velocity Predictor (McKown, 1986)
- SSH Identifier: Squeezing, Swelling, and Heaving Identifier (Bineshian, 2020)
- SysB Configurator: Systematic Bolting Configurator (Bineshian, 2021)
- ViD Assessor: Vibration-induced Damage Assessor (Bineshian, 2021)

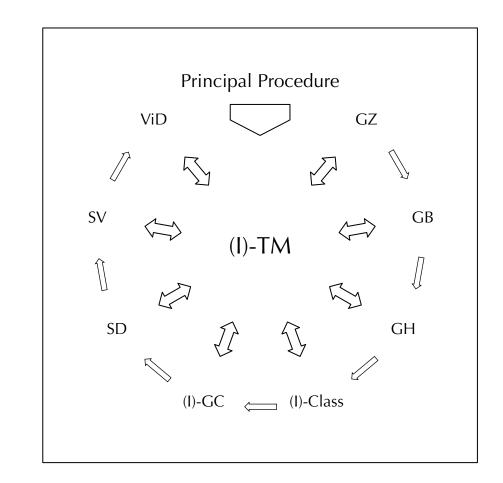

TAI

Tunnelling Asia 2023

International Conference on Underground Space

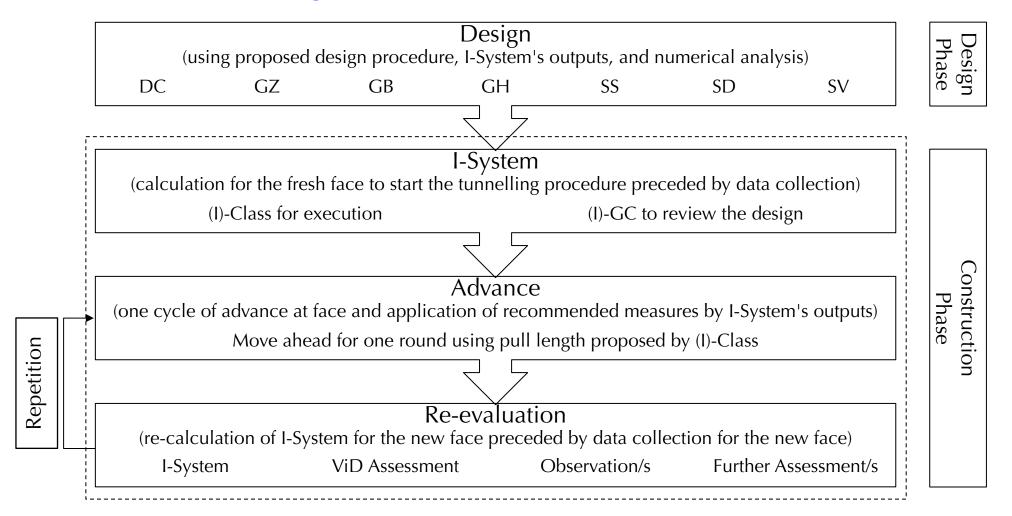
(I)-TM: Application




Tunnelling Asia 2023

International Conference on Underground Space

(I)-TM: Principles and Concept



(I)-TM: Utilisation Diagram

TAI

Tunnelling Asia 2023

International Conference on Underground Space

(I)-TM vs Other Existing Tunnelling Methods

Tunnelling Method	Application							Employing (Conceptual)					
	ln Phases				<u>_</u>	ln Media		ent Life ancy Structure	Contract tion	Ground's Capacity	ressure Depth	elease of in Plastic nd	Aeasures as art Measures
	Pre-design	Design	Construction	Post- construction	Rock	Soil	Under Special Conditions*	Permanent Life Expectancy for Tunnel Structu	Flexibility of Cont for Execution	Surrounding C Load Bearing (Arch Pressure at Any Depth	Controlled Release of Deformation in Plastic Ground	Primary Measures Part of Final Measure
Conventional	N/A	N/A	А	N/A	A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CnC	N/A	N/A	А	N/A	А	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A
NATM	N/A	N/A	А	N/A	A	N/A	N/A	N/A	N/A	A	C/A	C/A	N/A
NMT	N/A	N/A	А	N/A	C/A	N/A	N/A	N/A	N/A	A	N/A	N/A	А
Pipe/box Jacking	N/A	N/A	А	N/A	N/A	A	N/A	N/A	N/A	N/A	А	N/A	N/A
SCL	N/A	N/A	А	N/A	C/A	N/A	N/A	N/A	N/A	A	C/A	N/A	N/A
(I)-TM	A	A	А	A	A	A	A	A	А	A	А	A	А

A Applicable

C/A Conditionally Applicable

N/A Not Applicable

November 22nd – 23rd 2023, Mumbai, India

TAI

Tunnelling Asia 2023

International Conference on Underground Space

(I)-TM vs Other Existing Tunnelling Methods

Tunnelling Method			Embedded Classification	Embedded Characterisation	Post-excavation tmage Assessment				
	Support System	Excavation Technique/s	Instrumentatio n Technique/s	Prevention Technique/s	Forecast Technique/s	Stages in Construction	Emb Classi	Emb Charac	Post-ex Damage
Conventional	N/I	N/I	N/I	N/I	N/I	N/I	N/I	N/I	N/I
CnC	N/I	N/I	N/I	N/I	N/I	N/I	N/I	N/I	N/I
NATM	N/I	N/I	N/I	N/I	N/I	N/I	N/I	N/I	N/I
NMT	P/I	N/I	N/I	N/I	I	N/I	I	N/I	N/I
Pipe/box Jacking	N/I	N/I	N/I	N/I	N/I	N/I	N/I	N/I	N/I
SCL	P/I	N/I	N/I	N/I	N/I	N/I	N/I	N/I	N/I
(I)-TM	I	I	I	I	I	I	I	I	I

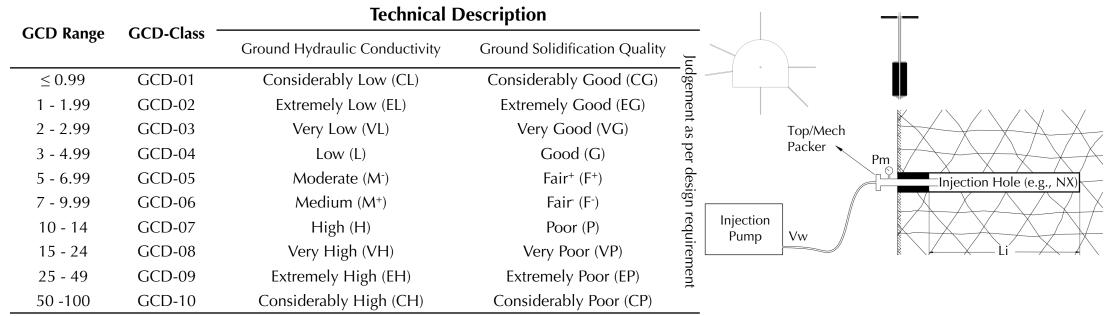
N/I Not Included in the method

Included in the method

P/I Partially Included in the method

Tunnelling Asia 2023

International Conference on Underground Space


Ground Conductivity Designation

$$GCD = \frac{V_w}{T_i(P_m + L_i)} \text{ Bineshian (2017, 2022)}$$

GCD	Ground Conductivity Designation (dimensionless)
Li	Length of water injected portion (packed length) of hole (or perforated SDA) in m (length of the hole to be equal
	or lesser than the grouted/injected length if GCD is used for post-grouting/injection assessment)
P _m	Peak head (MPa) during T _i (the measured water pressure before the first drop in peak; the first peak)

T_i Injection period (min) for injecting V_w water (the period from initial raise in pressure till the first drop in peak)

V_w Injected quantity of water (lit) during T_i (measured from the initial raise in pressure till the first drop in peak)

This presentation as part of a lecture and paper both entitled "(I)-TM's Output in T01 of USBRLP; An Efficient and **Safe Hybrid Tunnelling Method**" provided to you by Dr Bineshian, Hoss "AS IS". The content – entirely without any change, amendment, or modification – is part of the design – which is based on I-System and (I)-TM – submitted to KRCL and implemented successfully in T01 Tunnel in USBRLP of Northern Railway. I-System and (I)-TM developed by Bineshian (2019 - 2022). I-System is developed based on 22 years of research and practical experience of the author (officially released in 2019) to help the design of structures in ground including underground, surface, and semisurface structures. (I)-TM is the I-System's tunnelling method officially developed in 2022. The I-System can be used in the Civil, Mining, and Oil and Gas industries. The (I)-TM can be employed as a method for design and construction of any underground structures. They can be used in practice, academic, and research institutions due to their comprehensiveness in their applicability for any types of ground from any type of soil to any type of rock. You understand and agree to use the I-System, (I)-TM, and content or I-System Software and content at your own discretion and risk. Author make no guarantee/s regarding the content, quality, accuracy, precision, completeness, effectiveness, reliability, or usefulness of the I-System, (I)-TM, content, result/s, or advice/s obtained from the I-System, (I)-TM, or I-System Software, or that the I-System, (I)-TM, or I-System Software will be error-free. The same is applicable to this presentation, design, and content and its associated paper. Any articles and/or publications regarding the I-System and (I)-TM or this presentation and its associated paper is allowed to be used, copied, distributed, transmitted, stored, or translated in any form subject to cite the author of the I-System and (I)-TM as "Bineshian (2019 - 2022)", this presentation and its associated paper, or later or related publications under the author name.

References

- Bineshian, H 2019. 'I-System: Index of Ground-Structure; A Comprehensive Indexing System for Ground-Structure Behaviour; Classification and Characterization', JOEG, XLIV (1 & 2), 73 109.
- Bineshian, H, 2021. 'Design approach for tunnels using engineering classification with reference to I-System', EGCON 2021, Proceedings of Int Conf on Recent Advances in Geotechnics, Keynote Lecture, 56-74.
- Bineshian, H 2021. 'I-System: Index of Ground-Structure: 2021 Edition', JOEG, XLVI (1), 1 50.
- Bineshian, H 2022. '(I)-TM: I-System's Tunnelling Method An Introduction', TAI Journal, 11 (1): 40 49.
- Bineshian, H 2022. 'GCD Ground Conductivity Designation: 2022 Edition; A testing method to quantify grounds hydraulic conductivity and solidification quality', TAI Journal, In Press.
- Bineshian, H 2022. 'T01; The Most Challenging Tunnel in India', Technical Note, USBRLP, Submitted to Northern Railway, 20220515.
- Bineshian, H 2022. 'Tunnelling in Himalayas Terrain', Technical Note, USBRLP, Submitted to Northern Railway, 20220522.
- Bineshian, H 2022. 'Unlocking solution for the T01 in Himalayas' over-critical thrust wedge by I-System; The Most Challenging Tunnel in India', Tunnelling Asia 2022 International Conference on Underground Space: The need of the Day, Proc Int Conf TA 2022, Mumbai, India, 125 144.
- Mahi, S, Bineshian, H, Gupta, S, Hegde, R K, 2022. An Overview of the Success in Resolving the Years-lasting Problem of USBRLP's T01 Tunnelling in Himalayas' MBT within the RT Zone by Employing I-System and (I)-TM. Proc Int Conf on Engineering Geology and Geotechniques for Safe and Sustainable Infrastructures, EGCON 2022, Kolkata, India.